CS6104 (Spring 2025) — Frontiers of Quantum Information and Computation

Course description: After an introduction into the basics of quantum information and computation, we will to cover topics of current research such as: entanglement theory (including the concept of pseudo-entanglement), learning theory of quantum states and processes (hypothesis testing, (shadow) tomography); quantum communication in theory and practice (quantum repeaters, multipartite entanglement distribution, entanglement distillation); and noise in (random) quantum circuits (including the statistical mechanics model of random quantum circuits).

Course outline

Lecture notes

  1. Jan. 21, 2025 — Introduction
  2. Jan. 23, 2025 — Quantum states
  3. Jan. 28, 2025 — Entanglement
  4. Jan. 30, 2025 — Entanglement (part II)
  5. Feb. 4, 2025 — Entanglement tests and measures
  6. Feb. 6, 2025 — Quantum circuits and computation
  7. Feb. 11, 2025 — Clifford gates and universal gate sets
  8. Feb. 13, 2025 — Universal gate sets (part II)
  9. Feb. 18, 2025 — Solovay-Kitaev theorem; quantum channels
  10. Mar. 4, 2025 — Quantum channels; noise in quantum computing
  11. Mar. 6, 2025 — Quantifying noise and errors
  12. Mar. 18, 2025 — Quantifying noise and errors (part II); estimating Pauli expectation values
  13. Mar. 20, 2025 — Haar measure for unitaries
  14. Mar. 25, 2025 — Haar measure for unitaries (part II); unitary k-designs
  15. Mar. 27, 2025 — (Noisy) random quantum circuits
  16. Apr. 1, 2025 — (Noisy) random quantum circuits (part II)
  17. Apr. 3, 2025 — (Noisy) random quantum circuits (part III)
  18. Apr. 8, 2025 — Quantum-state tomography
  19. Apr. 10, 2025 — Quantum-state tomography (part II); information-complete measurements
  20. Apr. 15, 2025 — Quantum-state tomography (part III)
  21. Apr. 17, 2025 — Quantum-state tomography (part IV)
  22. Apr. 22, 2025 — Quantum-state learning; shadow tomography
  23. Apr. 24, 2025 — Shadow tomography (part II)

Suggested papers for the final presentation