

Graph states

Sumeet Khatri

February 18, 2022

A graph state [1–3] is a multi-qubit quantum state defined using graphs.

Consider a graph $G = (V, E)$, which consists of a set V of vertices and a set E of edges. For the purposes of this example, G is an undirected graph, and E is a set of two-element subsets of V . The graph state $|G\rangle$ is an n -qubit quantum state $|G\rangle_{A_1 \dots A_n}$, with $n = |V|$, that is defined as

$$|G\rangle_{A_1 \dots A_n} := \sum_{\vec{\alpha} \in \{0,1\}^n} (-1)^{\frac{1}{2} \vec{\alpha}^T A(G) \vec{\alpha}} |\vec{\alpha}\rangle, \quad (1)$$

where $A(G)$ is the adjacency matrix of G , which is defined as

$$A(G)_{i,j} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in E, \\ 0 & \text{otherwise,} \end{cases} \quad (2)$$

and $\vec{\alpha}$ is the column vector $(\alpha_1, \dots, \alpha_n)^T$. It is easy to show that

$$|G\rangle_{A_1 \dots A_n} = \text{CZ}(G)(|+\rangle_{A_1} \otimes \dots \otimes |+\rangle_{A_n}), \quad (3)$$

where $|+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and

$$\text{CZ}(G) := \bigotimes_{\{v_i, v_j\} \in E} \text{CZ}_{A_i A_j}, \quad (4)$$

with $\text{CZ}_{A_i A_j} := |0\rangle\langle 0|_{A_i} \otimes \mathbb{1}_{A_j} + |1\rangle\langle 1|_{A_i} \otimes Z_{A_j}$ being the controlled- Z gate.

Now, let

$$Z_{A_1 \dots A_n}^{\vec{x}} := Z_{A_1}^{x_1} \otimes \dots \otimes Z_{A_n}^{x_n}, \quad (5)$$

and observe that

$$\text{CZ}(G) H^{\otimes n} |\vec{x}\rangle = Z_{A_1 \dots A_n}^{\vec{x}} |G\rangle \quad (6)$$

for all $\vec{x} \in \{0,1\}^n$. Letting

$$|G^{\vec{x}}\rangle := Z_{A_1 \dots A_n}^{\vec{x}} |G\rangle, \quad (7)$$

note that $\{|G^{\vec{x}}\rangle\langle G^{\vec{x}}|\}_{\vec{x} \in \{0,1\}^n}$ is a POVM, due to the fact that

$$|G^{\vec{x}}\rangle = \text{CZ}(G) H^{\otimes n} |\vec{x}\rangle \quad (8)$$

for all $\vec{x} \in \{0,1\}^n$, which follows from (6) and (7), so that

$$\sum_{\vec{x} \in \{0,1\}^n} |G^{\vec{x}}\rangle\langle G^{\vec{x}}| = \text{CZ}(G) H^{\otimes n} \underbrace{\sum_{\vec{x} \in \{0,1\}^n} |\vec{x}\rangle\langle \vec{x}|}_{\mathbb{1}} H^{\otimes n} \text{CZ}(G)^\dagger = \mathbb{1}. \quad (9)$$

References

- [1] H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles”, *Physical Review Letters* **86**, 910 (2001).
- [2] R. Raussendorf and H. J. Briegel, “A one-way quantum computer”, *Physical Review Letters* **86**, 5188 (2001).
- [3] H. J. Briegel, “Cluster States”, in *Compendium of Quantum Physics*, edited by D. Greenberger, K. Hentschel, and F. Weinert (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 96–105.