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Motivation
I Simulation of fermionic quantum systems (e.g., for quantum chemistry applications) on a quantum

computer — Hamiltonians of the form
H = ∑

i,j
hi,ja†i aj + 1

2
∑
i,j,k ,`

hi,j,k ,`a†i a†j ak a` .

I Need a translation from fermionic language to qubit language.
I The choice of transformation has consequences, esp. for near-term devices. (e.g., transformations should

minimize number of qubits, circuit depth.)

Summary of work
I Fermion-to-qubit mapping with < 1.5 qubits per mode on a square lattice — less than all prior work.
I Mapping is essentially a stabilizer code: observables are local, but basis states are highly entangled.
I Other lattice geometries considered as well.
I General theory of fermion-to-qubit mappings.
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Indistinguishable
particles

Bosons Fermions
• e.g., photons
• Symmetric wavefunction:

Ψ(x1, x2) = Ψ(x2, x1)
• Unlimited occupation of

energy levels/“modes”

• e.g., electrons
• Anti-symmetric wavefunction:

Ψ(x1, x2) = −Ψ(x2, x1)
• At most one fermion can

occupy an energy
level/“mode”
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Hilbert space of indistinguishable particles
For n distinguishable particles: H⊗n (H = Cm ⇒ m modes)

For n indistinguishable particles
Bosons
Symmetric subspace of H⊗n:

Symn(H)
:= span {|ψ〉 ∈ H⊗n : W π |ψ〉 = |ψ〉 ∀ ∈ Sn

} .

Bosonic Fock space for m modes:

FB(H) :=
∞⊕

n=0
Symn(H)

Fermions
Anti-symmetric subspace of H⊗n:

ASymn(H)
:= span {|ψ〉 ∈ H⊗n : W π |ψ〉 = sgn(π)|ψ〉 ∀ π ∈ Sn

} .

Fermionic Fock space for m modes:

FF(H) :=
m⊕

n=0
ASymn(H). (dimension 2m)
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Creation and annihilation operators

Bosons
|n1, . . . , nm〉 = (a†1 )n1√n1! · · ·

(a†m)nm√nm! |0, . . . , 0〉.

a†j |. . . , nj , . . .〉 =
√

nj + 1|. . . , nj + 1, . . .〉,
aj |. . . , nj , . . .〉 = (1− δnj ,0)√nj |. . . , nj − 1, . . .〉.

[aj , a†j ] = δj ,k1, [aj , ak ] = [a†j , a†k ] = 0.

Fermions
|n1, . . . , nm〉 = (a†1 )n1 · · · (a†m)nm |0, . . . , 0〉.

a†j |. . . , nj , . . .〉 = δnj ,0(−1)∑j−1
k=1 nk |. . . , 1, . . .〉,

aj |. . . , nj , . . .〉 = δnj ,1(−1)∑j−1
k=1 nk |. . . , 0, . . .〉.

{aj , a†k } = δj ,k1, {aj , ak} = {a†j , a†k } = 0.

Fermionic modes have non-local structure!
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Fermion-to-qubit mappings

[J. Chem. Phys. 137, 224109 (2012)
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Two parts to the mapping:
1. Map the occupation number

basis states.
2. Map the creation and

annihilation operators.



Jordan-Wigner transformation

|n1, n2, . . . , nm〉 7−→ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nm〉,

a†j 7−→ Z1 ⊗ · · · ⊗ Zj−1 ⊗ 1
2 (Xj − iYj )⊗ 1j+1 ⊗ · · · ⊗ 1m,

aj 7−→ Z1 ⊗ · · · ⊗ Zj−1 ⊗ 1
2 (Xj + iYj )⊗ 1j+1 ⊗ · · · ⊗ 1m.

? Transformation of occupation basis states is local, but transformation of creation/annihilation operators is
non-local!
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Graphical formulation [“Fermionic Quantum Computation”; Annals of Physics 298, 210–226 (2002)]

Solution of Bravyi and Kitaev: increase number of qubits, and look only at mode interactions relevant to the
problem; i.e., only those interactions appearing in the Hamiltonian.
Consider first the “Majorana operators”:

γj := aj + a†j , γ j := −i(aj − a†j )

Then, define the following equivalent mode operators for edges and vertices of an undirected graph G = (V,E):
Ej ,k := −iγjγk ∀ (j , k ) ∈ E,

Vj := −iγjγ j ∀ j ∈ V.
It suffices for the fermion-to-qubit mapping to transform these operators to operators on qubits.
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Then, define the following equivalent mode operators for edges and vertices of an undirected graph G = (V,E):
Ej ,k := −iγjγk ∀ (j , k ) ∈ E,

Vj := −iγjγ j ∀ j ∈ V.
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Properties:

Vk = V †k , E†j,k = Ej ,k , V 2k = 1, E2j ,k = 1, Ek,j = −Ej ,k ,
Vk V` = V`Vk , Ej ,k B` = (−1)δj ,`+δk,`V`Ej ,k , Ej ,k E`,s = (−1)δj ,`+δj ,s+δk,`+δk,s E`,sEj ,k ,

ipEj1,j2 Ej2,j3 · · · Ejp−1,jp Ejp ,j1 = 1 for any closed path (j1, j2, . . . , jp).
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Bravyi-Kitaev “superfast” transformation [Annals of Physics 298, 210–226 (2002)]

Procedure [J. Chem. Phys. 148, 164104 (2018)]

1. Associate every mode to the vertex of a graph.
2. Given the Hamiltonian, get the number of edges required.
3. Put the qubits on the edges. # of qubits = |E| = 12

∑
v∈V deg(v ).

4. Define the following qubit operators for the edges and vertices:
Ẽj ,k = εj ,k X(j ,k )

∏
` :(`,j)<(k,j)

Z(`,j)
∏

s:(s,k )<(j ,k )
Z(s,k ), Ṽk = ∏

j :(j ,k )∈E
Z(j ,k ).

5. Find the independent loops in the graph. Define stabilizers for these loops.
6. Use the stabilizers to find the relevant subspace that fermionic states get mapped to:

span{|ψ〉 : C̃j1,j2,...,jp |ψ〉 = |ψ〉 for all closed paths (j1, j2, . . . , jp) in the graph} ,
where

C̃j1,j2,...,jp = ipẼj1,j2 Ẽj2,j3 · · · Ẽjp−1,jp Ẽjp ,j1 .
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The new mapping for a square lattice [arXiv:2003.06939, arXiv:2101.10735]

? Put qubits on the vertices and odd faces instead.
⇒ number of qubits for L1 × L2 lattice is m + nF2 , where m = L1L2 (# of modes) and nF = (L1 − 1)(L2 − 1) (# of
faces).

Ṽj = Zj ,

Ẽi,j =



XiYjXf (i,j) (i, j) oriented downwards,
−XiYjXf (i,j) (i, j) oriented upwards,
XiYjYf (i,j) (i, j) horizontal,

where f (i, j) = the unique odd face adjacent to (i, j).
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