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Motivation

» Simulation of fermionic quantum systems (e.g., for quantum chemistry applications) on a quantum
computer — Hamiltonians of the form

I T 1
H= § hija; a; + 5 > hijk.ea; a; axap.
if ij.k.e

» Need a translation from fermionic language to qubit language.

» The choice of transformation has consequences, esp. for near-term devices. (e.g., transformations should
minimize number of qubits, circuit depth.)
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» Need a translation from fermionic language to qubit language.

» The choice of transformation has consequences, esp. for near-term devices. (e.g., transformations should
minimize number of qubits, circuit depth.)

Summary of work

» Fermion-to-qubit mapping with < 1.5 qubits per mode on a square lattice — less than all prior work.
» Mapping is essentially a stabilizer code: observables are local, but basis states are highly entangled.
» Other lattice geometries considered as well.

» Ceneral theory of fermion-to-qubit mappings.
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even face majority majority
Mapping [13] [10, 11] [15] [12] [14] number  even faces odd faces
Qubit oy 1) 2L OL(L—1) 20— L 3L® |15L%—L 15L%2—L—1 15L%—L+41
Number
Qubit to 2 2 1 2 2 1 2 1
Mode Ratio| 2~ 2 2 2-2 2-1 3 L5-2 15-2 ;L 15241
Maxe Weight/ 1 1 5 1 3 3 3
opping
Max Weight
Coulomb 8 2 6 6 6 2 2 2
Encoded Full
Fermionic Even Full Even Full Even Full Even .
Plus Qubit
Space
Graph Square  Square Square Square Square
Geometry General - General Lattice Lattice General Lattice Lattice Lattice

TABLE I. A comparison of existing local fermion to qubit mappings on an L x L lattice of fermionic modes. The mapping
presented in this work is given in the three rightmost columns. Max weight Coulomb and max weight hopping denote the
maximum Pauli weights of the mapped Coulomb (a:aia}aj) and nearest neighbour hopping (a;faj + a;ai) terms respectively.
Encoded fermionic space denotes whether the full or even fermionic fock space is represented. Graph geometry denotes the
hopping interaction geometry which the mapping is tailored to.
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e eg, electrons
e e.g, photons

e Anti-symmetric wavefunction:

e Symmetric wavefunction:
J W(x1, x2) = =W (x2, x1)

L|J (X1 ) Xz) = L|)(X2, X1)

e At most one fermion can
occupy an energy
level/"mode”

e Unlimited occupation of
energy levels/*modes”
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Hilbert space of indistinguishable particles

For n distinguishable particles: 3®" (3 = C” = m modes)

For n indistinguishable particles

Bosons Fermions

Symmetric subspace of H®"™: Anti-symmetric subspace of H®":

Sym,(¥) ASym, (H)
=span{|y) € H® W) = |¢g) ¥V €8,}. = span {|y) € H®": WT|p) = sgn(m)|¢p) ¥ 7 €8,}.

Bosonic Fock space for m modes: Fermionic Fock space for m modes:

Fp(H) = @ng”(f}f) Fr(H) = @Ang”(ﬂf), (dimension 2™)

n=0 n=0
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Creation and annihilation operators

Bosons Fermions
Ty Ty I, ) = (@)™ - (al)™]0, ..., 0).
[, ..., Ny) = (ar) (am) 0,..., 0). 1
V! V!
allom ) = Gy o)D)
allcom)=/mH 1)
i

G| nj > - 517,W(_1) k=1 nk‘ O,>

alom, ) = (1= B/l =1, ! '
laj. /| = o1, g, a] =[a] , a/]=0. {o.0l} =841, {0, a}=1{d al}=0.
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Creation and annihilation operators

Bosons Fermions
Tym ) |1, ) = (al) - (al)™]0, .. 0).
[, ..., Ny) = (ar) (am) 0,..., 0). 1 m
\/m \ I7/77'

7 CI/, | n/ > - 5/1/,0(_1)2‘\ IHA‘ 1 >

allcom)=/mH 1) 1

Yoy Mk
ajl....nj Y = 0p 1 (—1)&k=1"%] 0,...)
al...ony )= (1 =050/l ..o —1,.)

la,a/]= 641, [, a]=]a,al]=0. {a.al} = 841, {ana) = {d"al} —0.

Fermionic modes have non-local structure!
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Creation and annihilation operators

Bosons 0NE nﬂEs "'yr Fermions
SIM\E“ M, nm) = (a)" - (ah)™]0, ..., 0).

-

. .
. “"f',/ a/.|.__,nj,_._>:5,7W(fw)LLfllw\___,o,_,.).

-

MM’ FERMIONS TO
0“8"5@“ 12815 {a;, a,l} =0l {g,a} = {C’,/ a,l} =0.

Fermionic modes have non-local structure!
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Fermion-to-qubit mappings

A

fermionic
operator

D

|W).

lectrons

Y4

electrons

[J. Chem. Phys. 137, 224109 (2012)

>

Path 1

encode

Path 2

inverse encode

W),

N

ubits

qubit
operator

| ‘-IJ '>qubits

C

Two parts to the mapping:

1. Map the occupation number
basis states.

2. Map the creation and
annthilation operators.
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Jordan-Wigner transformation

m,m, ..., Np) — M) @ M) ® -+ @ |ny),

1
7()(/ - LY/) ® II-/+1 ® ]]-m:

a]'HZ1®-~®Z,,1®2

1
G—4® - ®1Q5

2()(]+l)//)®]l/+1 ®"'®1m-

* Transformation of occupation basis states is local, but transformation of creation/annihilation operators is
non-local!
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Gl‘a phiCé\l fOl'lT]Ulat'lon [“Fermionic Quantum Computation”; Annals of Physics 298, 210-226 (2002)]

Solution of Bravyt and Kitaev: increase number of qubits, and look only at mode interactions relevant to the
problem; i.e, only those interactions appearing in the Hamiltonian.

Consider first the “Majorana operators”:

yi=a+a, v =—ig-a)

Then, define the following equivalent mode operators for edges and vertices of an undirected graph § = (V, &):
Ejx=—tyve V(. k)e€E,
Vi=—lyy, VjEWV.

It suffices for the fermion-to-qubit mapping to transform these operators to operators on qubits.
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Gl‘a phiCé\l fOl'lT]Ulat'lon [“Fermionic Quantum Computation”; Annals of Physics 298, 210-226 (2002)]

Then, define the following equivalent mode operators for edges and vertices of an undirected graph § = (V, €):
Ejx ==y V(. k)eE,
Vi=—lyy, VjEV.
It suffices for the fermion-to-qubit mapping to transform these operators to operators on qubits.
Properties:
Vi=V!, Eli=Ex Vi=1, E}=1, Ey=—FEp,
ViVe = VoVi,  EjiBo = (1) % VGE y,  EjEps = (— 1) 00 Os £y F

E;, . E;

2=

E

Jp—1p

Ejpn=1 for any closed path (i, 2, ..., jp).
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Bravyi-Kitaev “superfast” transformation annats of Physics 298, 210-226 (2002)]

Procedure [J. Chem. Phys. 148, 164104 (2018)]

1. Associate every mode to the vertex of a graph.
2. Given the Hamiltonian, get the number of edges required.
3. Put the qubits on the edges. # of qubits = €] = 1Y _\ deg(v).

4. Define the following qubit operators for the edges and vertices:

E,k = efrkX(/vk) |_| ZF/ |_| Zsk A\}k = |_| Z(/,k)-

¢(0))<(k.j) si(s.k)<(j k) jlikee
5. Find the independent loops in the graph. Define stabilizers for these loops.

0. Use the stabilizers to find the relevant subspace that fermionic states get mapped to:

span {|Lp> eyl W) = () for all closed paths (ji, o, .. ., j,) in the graph} ,
where
- _V¥YE..E...-E . E..
Gijo. = UEjp Ep i E/ppr E//JJW'
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The new mapping for a square lattice [arxiv:2003.06939, arXiv:2101.10735]

* Put qubits on the vertices and odd faces instead.

= number of qubits for Ly x L, lattice is m + &, where m = Ly L, (# of modes) and ng = (Ly — 1)(L; — 1) (# of

faces).
V=2,
_ XiYiXip
Eij=1q —XYXuy
XY Yi)

where f(i,j) = the unique odd face adjacent to (i, ).

(i, ) oriented downwards,
(¢, /) ortented upwards,
(¢, ) horizontal,

2‘44 o < .Y%ii)(.f [ ]
B
R
e T

FIG. 1. Qubit assignment, edge orientation, and examples of
mapped edge and vertex operators for a 4 x 5 square lattice.
Vertices are numbered in snaking order, left to right, top to
bottom.

12/14



even face majority majority
Mapping [13] [10, 11] [15] [12] [14] number  even faces odd faces
Qubit oy 1) 2L OL(L—1) 20— L 3L® |15L%—L 15L%2—L—1 15L%—L+41
Number
Qubit to 2 2 1 2 2 1 2 1
Mode Ratio| 2~ 2 2 2-2 2-1 3 L5-2 15-2 ;L 15241
Maxe Weight/ 1 1 5 1 3 3 3
opping
Max Weight
Coulomb 8 2 6 6 6 2 2 2
Encoded Full
Fermionic Even Full Even Full Even Full Even .
Plus Qubit
Space
Graph Square  Square Square Square Square
Geometry General - General Lattice Lattice General Lattice Lattice Lattice

TABLE I. A comparison of existing local fermion to qubit mappings on an L x L lattice of fermionic modes. The mapping
presented in this work is given in the three rightmost columns. Max weight Coulomb and max weight hopping denote the
maximum Pauli weights of the mapped Coulomb (a:aia}aj) and nearest neighbour hopping (a;faj + a;ai) terms respectively.
Encoded fermionic space denotes whether the full or even fermionic fock space is represented. Graph geometry denotes the
hopping interaction geometry which the mapping is tailored to.

13/14



14/14



