Quantum compilation and its noise resilience

Sumeet Khatri

Department of Physics & Astronomy, Louisiana State University

Slides for [Quantum 3, 140 (2019)] and [NJP 22, 043006 (2020)]

December 18, 2020

Near-term quantum computing

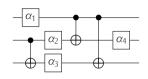
Ultimate goal: fault-tolerant quantum computers. But this requires many good-quality qubits: $\approx 1000s$ of physical qubits per logical qubit.

We currently have noisy intermediate-scale quantum (NISQ) computers:

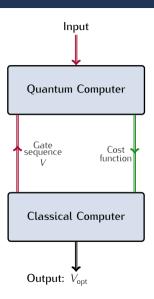
- ▶ Limited number of qubits (\approx 50–100), not fault tolerant.
- ► Limited connectivity between qubits.
- ► Limited circuit depth due to noise.

What can we do with such quantum computers?

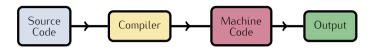
Variational quantum algorithms [NJP 18, 023023 (2016)]



- ► Variational quantum eigensolver (VQE). [Nat. Commun. **5**, 4213 (2014)]
- ➤ Variational quantum autoencoders. [Quant. Sci. Technol. 2, 045001 (2017)]
- ► Variational quantum state diagonalization. [npj Quant. Inf. **5**, 57 (2019)]
- * Our variational algorithm: Quantum-assisted quantum compiling [Quantum 3, 140 (2019)].



To run an algorithm on a quantum computer, we must *compile it*.

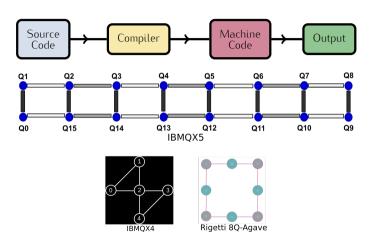


To run an algorithm on a quantum computer, we must *compile it*.

Need to adapt algorithms to NISQ device constraints:

- ► Native gate alphabet;
- ► Connectivity;
- ► Short depth (use fewest possible gates).

Note: short depth is also important for future fault-tolerant quantum computers.



Typical compilation procedure

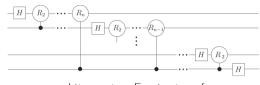
[IEEE Trans. CAD **27**(3), 436 (2008)] [Quantum Sci. Technol. **3**, 025004 (2018)]

Given: Unitary U as a high level gate sequence.

Step 1: Individually decompose every gate into the native gate alphabet.

Step 2: Sweep through the circuit, removing and/or combining redundant gates via, e.g., matrix identities.

Output: Gate sequence V (compilation of U).



n-qubit quantum Fourier transform

Typical compilation procedure

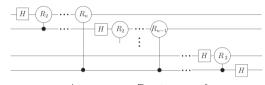
[IEEE Trans. CAD **27**(3), 436 (2008)] [Quantum Sci. Technol. **3**, 025004 (2018)]

Given: Unitary U as a high level gate sequence.

Step 1: Individually decompose every gate into the native gate alphabet.

Step 2: Sweep through the circuit, removing and/or combining redundant gates via, e.g., matrix identities.

Output: Gate sequence V (compilation of U).



n-qubit quantum Fourier transform

Drawbacks

- * Step 2 can be inefficient, esp. for large circuits.
- * Requires classical simulation of the circuit in general.

Typical compilation procedure

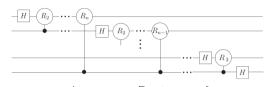
[IEEE Trans. CAD **27**(3), 436 (2008)] [Quantum Sci. Technol. **3**, 025004 (2018)]

Given: Unitary U as a high level gate sequence.

Step 1: Individually decompose every gate into the native gate alphabet.

Step 2: Sweep through the circuit, removing and/or combining redundant gates via, e.g., matrix identities.

Output: Gate sequence V (compilation of U).



n-qubit quantum Fourier transform

Drawbacks

- * Step 2 can be inefficient, esp. for large circuits.
- * Requires classical simulation of the circuit in general.

* Quantum-assisted quantum compiling (QAQC) is a method for quantum compiling that runs the algorithms on an actual quantum computer, and can perform approximate optimal compilation.

Typical compilation procedure

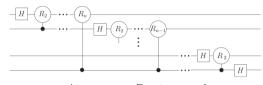
[IEEE Trans. CAD **27**(3), 436 (2008)] [Quantum Sci. Technol. **3**, 025004 (2018)]

Given: Unitary U as a high level gate sequence.

Step 1: Individually decompose every gate into the native gate alphabet.

Step 2: Sweep through the circuit, removing and/or combining redundant gates via, e.g., matrix identities.

Output: Gate sequence V (compilation of U).



n-qubit quantum Fourier transform

Drawbacks

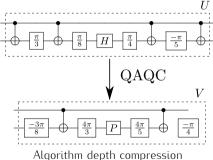
- * Step 2 can be inefficient, esp. for large circuits.
- * Requires classical simulation of the circuit in general.

* Quantum-assisted quantum compiling (QAQC) is a method for quantum compiling that runs the algorithms on an actual quantum computer, and can perform approximate optimal compilation.

QAQC performs optimal (approximate) algorithm depth compression

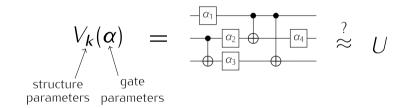
U is the result of Step 1: an initial "pre-compiled", non-optimal gate seguence.

V is the result of OAOC.

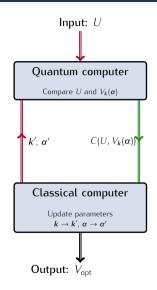


Given: A unitary *U*.

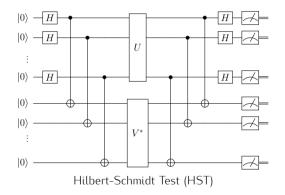
Goal: find the optimal parameterized gate sequence $V_k(\alpha)$.



- $ightharpoonup C(U, V_k(\alpha))$ quantifies the distance between U and $V_k(\alpha)$.
- ightharpoonup lpha
 ightharpoonup lpha' via gradient descent optimizer (or non-gradient optimizer); k
 ightharpoonup k' via simulated annealing (or genetic algorithms).



Cost function calculation on quantum computer



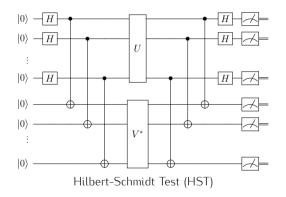
★ Can also compute gradient (see paper for details).

► Probability of the all-zeros outcome is

$$\frac{1}{2^{2n}}|\text{Tr}[V^{\dagger}U]|^2.$$

The quantity is invariant under global phase.

Cost function calculation on quantum computer



★ Can also compute gradient (see paper for details).

► Probability of the all-zeros outcome is

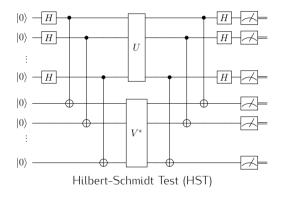
$$\frac{1}{2^{2n}}|\text{Tr}[V^{\dagger}U]|^2.$$

The quantity is invariant under global phase.

► Cost function:

$$C_{\text{HST}}(U, V) := 1 - \frac{1}{2^{2n}} |\text{Tr}[V^{\dagger}U]|^2.$$

Cost function calculation on quantum computer



 \star Can also compute gradient (see paper for details).

► Probability of the all-zeros outcome is

$$\frac{1}{2^{2n}}|\text{Tr}[V^{\dagger}U]|^2.$$

The quantity is invariant under global phase.

► Cost function:

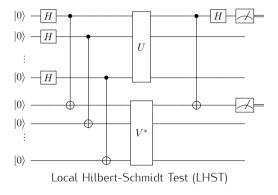
$$C_{\text{HST}}(U, V) := 1 - \frac{1}{2^{2n}} |\text{Tr}[V^{\dagger}U]|^2.$$

► Related to trace distance:

$$\begin{split} \frac{1}{2} \left\| |\Phi_{U}\rangle\langle\Phi_{U}| & - |\Phi_{V}\rangle\langle\Phi_{V}| \right\|_{1} = \sqrt{C_{\mathsf{HST}}(U, V)}, \\ |\Phi_{U}\rangle &= (\mathbb{1} \otimes U)|\Phi\rangle, \\ |\Phi_{V}\rangle &= (\mathbb{1} \otimes V)|\Phi\rangle, \end{split}$$

 $|\Phi\rangle$: *n*-qubit maximally entangled state.

Alternate (local) cost function for large problem sizes



 \star Can also compute gradient (see paper for details).

► Cost function:

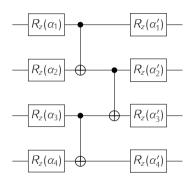
$$C_{LHST}(U, V) := \frac{1}{n} \sum_{j=1}^{n} (1 - \Pr[(0, 0)_j]).$$

- ► Faithful cost function (like HST).
- Works better for optimization on large problem sizes.

Advantages of QAQC

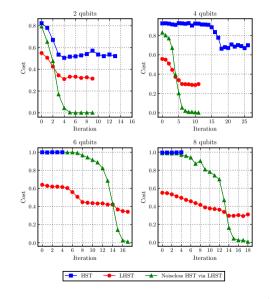
- ► No need to classically simulate the circuit.
- ▶ Both cost function calculations difficult to simulate classically.
 - ★ Both are DQC1-hard [PRL 81, 5672 (1998)].
 - ★ Classical simulation of DQC1 is impossible unless polynomial hierarchy collapses to the second level [PRL 120, 200502 (2018)].
- ► Holistic approach: optimizes gate parameters and also structure, and does not compile in gate-by-gate manner.
- ▶ Not just a NISQ application: depth compression is useful even for fault-tolerant quantum computers!
- \star How well does it perform, especially in the presence of noise?

Results on a noisy simulator

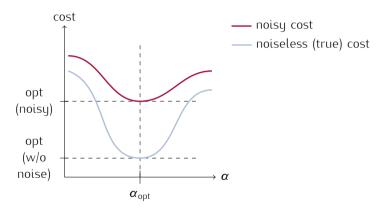


Observations

- \star HST does not optimize well, but LHST does.
- * LHST optimization finds the correct minimum even in the presence of noise!

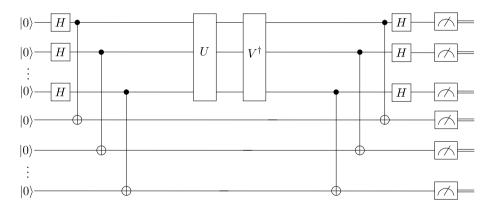


* Resilience is with respect to the gate parameters: optimal gate parameters obtained via noisy optimization are also optimal without noise. So we obtain the true optimum even with noise.

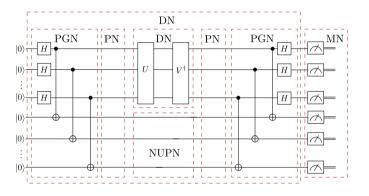


 \star We provide proofs of noise resilience under certain noise models.

Alternate HST circuit



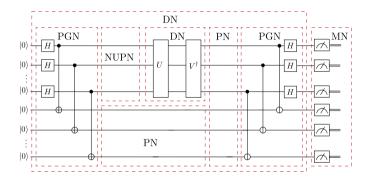
Noise model 1



- ► DN: depolarizing noise
- ► PGN: Pauli gate noise
- ► PN: Pauli noise
- ➤ NUPN: non-unital Pauli noise (e.g., amplitude damping)
- ► MN: measurement noise

- \star We prove noise resilience under this noise model. We can also add noise in between U and V^{\dagger} (see paper for details.
- * Analogous results for LHST circuit.

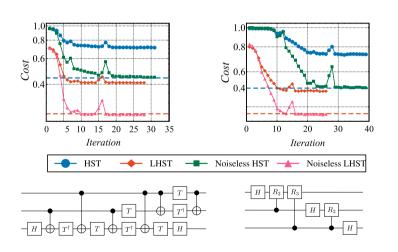
Noise model 2

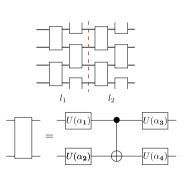


- ► DN: depolarizing noise
- ► PGN: Pauli gate noise
- ► PN: Pauli noise
- ► NUPN: non-unital Pauli noise (e.g., amplitude damping)
- ► MN: measurement noise

- \star We prove noise resilience under this noise model. We can also add noise in between U and V^{\dagger} (see paper for details.
- \star Analogous results for LHST circuit.

Examples





Summary & outlook

- Variational algorithm (QAQC) to compile quantum algorithms ⇒ depth reduction. [Quantum 3, 140 (2019)].
 - ► Circuits (HST and LHST) that compare two quantum circuits.
- ▶ Both the HST and LHST cost functions exhibit *optimal parameter resilience* under certain noise models. [NJP 22, 043006 (2020)]
 - ▶ Optimal solution under noisy optimization corresponds to an optimal solution under noiseless optimization.

Summary & outlook

- Variational algorithm (QAQC) to compile quantum algorithms ⇒ depth reduction. [Quantum 3, 140 (2019)].
 - ► Circuits (HST and LHST) that compare two quantum circuits.
- ▶ Both the HST and LHST cost functions exhibit optimal parameter resilience under certain noise models. [NJP 22, 043006 (2020)]
 - Optimal solution under noisy optimization corresponds to an optimal solution under noiseless optimization.

Future directions

- ► Investigate noise resilience of other variational algorithms.
- ► Algorithms for error mitigation on NISQ devices.