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Abstract

A quantum causal network can be thought of as a quantum channel with multiple inputs and
outputs that, due to its causal structure, is constrained beyond the usual complete-positivity and
trace-preservation requirements. Quantum causal networks can take adaptive inputs, making
them a natural model for interactive protocols in quantum information processing, ranging
from quantum communication, quantum metrology, quantum interactive proof systems, and
even quantum generalizations of reinforcement learning. In these notes, we provide a review of
quantum causal networks and we discuss information quantities and resource measures for them.
Specifically, we look at the generalized divergence, fidelity, and Schatten a-norms of quantum
causal networks, and we study some of their basic properties. We then use these quantities
to define resource measures for quantum causal networks. We end with a discussion of some
problems for future work on quantum causal networks.
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1 Introduction

A causal network is an object that is used to model the cause-and-effect relationships between
physical systems. Classically, they model the causal relationships between random variables [1],
and can be used to study the time-evolution of groups of systems that interact with each other.
Similarly, quantum causal networks [2-5] model the relationships between quantum systems over
time. The generality of quantum causal networks means that they arise in almost every area of
quantum information processing, such as adaptive protocols for quantum metrology [6-8|, quantum
communication [9-14], and quantum error correction [15]. They are also used in the study of quan-
tum interactive proof systems [16], and even in quantum generalizations of reinforcement learning
[17, 18].

The formulation of a quantum causal network that we consider is illustrated in Fig. 1, and
it is the one presented in [2] (also in [19], where it is referred to as a “quantum strategy”). The
lines represent quantum systems, and the nodes, or boxes, represent quantum channels. As an
example, the nodes can be thought of as devices, and an agent interacting with the device has
access only to the input and output systems A; and B;, while the systems E; model the device’s
internal memory and are inaccessible to the agent. Note that the nodes can also represent the same
device at different points in time, so that different channels in each node corresponds to a device
that changes its behavior with time.

Being a concatenation of quantum channels, a quantum causal network can simply be viewed
as a quantum channel itself. However, a quantum causal network is more than just a quantum
channel—its causal structure implies that the channels comprising a quantum causal network can
be used adaptively, or interactively. In particular, continuing the example above, the agent need
not provide the inputs A; to the device all at once. Instead, it can use the outputs B; of the device
from previous time steps to determine the inputs to the device for future time steps. Typically,
the agent’s task in such a scenario is to use the device to achieve a desired goal. The agent must
therefore determine an optimal sequence of inputs relative to a given figure of merit. From this
perspective, it is natural to think of the device, and of the quantum causal network more generally,
as a resource that the agent uses to accomplish its task.

Resource theories, in the form that they have been considered recently in the quantum informa-
tion setting [20, 21|, are based upon the idea that certain types of objects or physical entities are
free, meaning that they are allowed to be used to accomplish a certain task. Any object that cannot
be created using the free objects alone is called a resource. The idea is that the resources, while still
physical, are somehow rare and should be used sparingly. Accordingly, the cost for a particular task
is given by the number of resources needed to accomplish it. This viewpoint has been fruitful in the
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FIGURE 1: An example of a quantum causal network. Time proceeds from left to right. The
lines represent quantum systems, and the nodes/boxes represent quantum channels—physical
transformations of the input systems into the output systems. The network can be thought
as representing a device to which an agent has access via the systems A; and from which it
receives feedback via the systems B;.

analysis of, e.g., quantum communication and quantum thermodynamics. Recently, there has been
heightened interest in the development of a general resource theory of quantum channels [22-28] and
in the understanding of the limits on resource interconversions, meaning how well one resource can
be converted into another resource using free quantum channels only. Although current work on the
resource theory of quantum channels covers quantum causal networks in principle, they ostensibly
do not take into account explicitly the causal constraints, and thus the error estimates obtained in
them are not necessarily best suited to quantum causal networks.

In this note, we set out on the task of understanding the resourcefulness of quantum causal
networks. The first step in such a study is quantifying the information contained in a quantum causal
network. To this end, we consider a definition of the generalized divergence between two quantum
causal networks. Intuitively, the generalized divergence quantifies how “far” the states generated by
the two networks are, and it is a natural extension of the definition of the generalized divergence
between two quantum channels. In particular, the generalized divergence that we consider reduces
to the generalized divergence for ordinary quantum channels if we consider a network with just one
node. We also consider the fidelity between quantum causal networks, and we define a notion of
Schatten a-norm for quantum causal networks that extends prior work on the “strategy norm” [29]
for quantum causal networks. An important property that quantities in information theory should
satisfy is the data-processing inequality. The rich structure of quantum causal networks leads to
a variety of different ways of transforming them, and thus different forms of the data-processing
inequality, some of which we investigate. We also consider an application to hypothesis testing and
discrimination of quantum causal networks.

The information quantities that we consider here are then used to define resource measures for
quantum causal networks, in a similar manner to the study conducted in [22]. In particular, our
measures reduce to the measures defined in [22] if we consider a quantum causal network with just
one node. We prove some of the necessary properties for these measures, such as data processing
and faithfulness, and we lay out resource interconversion problems. Again, the rich structure of
quantum causal networks leads to many different kinds of possible transformations, and it also
leads to different ways of distilling quantum states and quantum channels. Looking at quantum
causal networks as resources also leads to an interesting, physically motivated question of how many
rounds of interaction with a given device, modeled as a quantum causal network, are needed in order
to accomplish a particular task (problems of this type are relevant in, e.g., reinforcement learning),



and we provide the starting point for investigating these problems.

Because all of the measures that we define in this note reduce to the ones defined previously
for quantum channels in the case that the quantum causal network contains only one node, one
desirable outcome of the development here is that we obtain a general framework for the study of
quantum dynamical processes. We also expect the information quantities defined in this note to
be useful outside the realm of resource theories, such as investigations of the information-theoretic
limits of quantum reinforcement learning [17, 18].

Outline. The rest of this note is structured as follows.

e In Sec. 2, we provide a review of quantum causal networks. Along with stating the constraints
on the Choi representation of a network due to the causal constraints, an important part of
the review is Proposition 1, which pertains to the combination of a causal network with a
“pure” network that is central to definitions of our information quantities.

e In Sec. 3, we define information quantities for quantum causal networks, starting with quan-
tities based on generalized divergences in Definition 2. We also define quantities based on
fidelity (Definition 6), and we consider a definition of the Schatten a-norm for quantum
causal networks (Definition 7). In Sec. 3.4 we outline certain types of transformations of
quantum causal networks and prove that our quantities satisfy a data-processing inequality
under these transformations. As an application of the generalized divergence-based measures,
we consider in Sec. 3.5 the tasks of (binary) hypothesis testing of quantum causal networks
and the discrimination of multiple quantum causal networks.

e Finally, in Sec. 4, we use the quantities defined in Sec. 3 to define resource measures for
quantum causal networks (Definition 11). These have a standard construction as the gener-
alized divergence to a set of free networks. We prove that these resource measures satisfy a
data-processing inequality under free networks and are faithful (Theorem 11). We also prove
that the commonly-used log-robustness as a resource quantifier for state and channel resource
theories does not take the adaptiveness of quantum causal networks into account, meaning
that its value is equal to the value under non-adaptive uses of the network. We end Sec. 4 with
some interesting directions for future work on transformations of quantum causal networks to
quantum states and quantum channels. We provide concluding remarks in Sec. 5.

Notation. We let Lin(A) denote the set of linear operators acting on the finite-dimensional com-
plex vector space (Hilbert space) H 4 associated with the quantum system A, and we let d4 denote
the dimension of H 4. For every pair A and B of quantum systems, we use A = B to signify that
the corresponding Hilbert spaces H4 and Hp are isomorphic (and thus d4 = dg). For a collection
Aq,..., A, of quantum systems, we let A7 = A;--- A, denote the composite quantum system with
Hilbert space Ha, ® -+ ® Ha,. For brevity and simplicity of notation, throughout this note we
suppress identity operators in tensor products.



2 Review of quantum causal networks

We start with a review of quantum causal networks. In particular, we review the definitions and
results from [2, 19, 30, 31|, in which the proofs of all of the results being presented can be found.

From now on, for brevity and due the visual look of a quantum causal network as in Fig. 1, we
refer to a quantum causal network with r nodes as an “r-comb”.

2.1 Definition and basic properties

A quantum r-comb with input systems Ay, ..., A,, output systems By, ..., B,, and memory systems
Ey,...,E._1,is depicted in Fig. 1, and it is defined as a sequence (£ L ... &") of quantum channels
5}11—>B1E17 6,]4.7-Ej_1—>BjEj for2<j <r—1, and £4,E, ,-B,..- We use the notation

el =gt,....en (1)

to refer to a quantum comb. A quantum comb can be thought of as representing a sequence of
actions over time, with the actions represented by quantum channels, so that the channel £/ is the
channel applied at the j% time step.

The comb in Fig. 1 is often referred to as a strategy (see [19]). From a strategy comb, we can
derive three other types of combs, as shown in Fig. 2.

o Measuring strategy: Illustrated in Fig. 2(a), a measuring strategy is defined by setting the
map £ to be the measurement channel p — Y~ 5 Tr[A%p]|z)(z| corresponding to a positive
operator-valued measure (POVM) {A”*},cr, where X is some finite set.

o Co-strategy: Illustrated in Fig. 2(b), a co-strategy is defined by setting d4, = 1 and setting
the map E! to be the preparation channel for a quantum state o, g, .

e Measuring co-strategy: Ilustrated in Fig. 2(c), a measuring co-strategy is defined by setting
da, = 1, setting the map €' to be the preparation channel for a quantum state opg, g,, and
setting £ to be the measurement channel p — >, Tr[A%p]|x)(z| corresponding to a POVM
{A"}zcx, where X is some finite set.

[

For emphasis, we often write 5(21) to refer to a strategy r-comb and &
r-comb.

[r]

(co-st) to refer to a co-strategy

Given an r-comb I = (€1,...,&") with input system A7, output systems B}, and memory
systems E7 ! we can define a set {€[M72] . 1 <r) < 7y <7} of quantum combs as follows:

ghrirl = (gm gn+l | grz), (2)

In other words, 2] is a (ro —r1 + 1)-comb with input systems A,, Ey _1,...,A,,, output sys-

tems By,,..., By, Er,, and memory systems E, ..., E.,_1. Another set of “truncated” combs is
{elrikyr L where

gk — (&1, ..., Trp, o). (3)
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FIGURE 2: The three types of quantum combs that derive from the quantum comb in Fig. 1.
In (a), we set £ to be the measurement channel corresponding to the POVM {A®},cx. In
(b), we set da, = 1 and let ! be the preparation channel for the state op,g,. In (c), we set
da, = 1, we let £' be the preparation channel for a quantum state op, g,, and we set £* to
be the measurement channel corresponding to the positive operator-valued measure (POVM)

{Am}z€X~



In other words, E* is a k-comb with input systems A]f, output systems B{‘“' , and memory systems

Ef_l, which we obtain by truncating £ at the k'™ step and tracing out the memory system Ej.
We also define the “time-shifted” comb EIH, for ¢ > 0, as follows:

EMHt = (idy,,idg,, ... ,idAL,51,52, L LED), (4)

t times

where id 4, is the identity channel for the system Aj, which we recall is the input to the channel £1.
In other words, £ is a (r + t)-comb in which no action is performed for the first ¢ time steps,
and the actions corresponding to the given comb are delayed until the (¢ + 1)5* step. Time-shifting
a comb can be useful in the context of tensor products of combs (which we discuss below), because
we might want to have a relative time difference between the application of different combs.

As mentioned in the Introduction, any quantum comb can be thought of as a multipartite
channel (i.e., a quantum channel with multiple inputs and multiple outputs) with causal constraints.
Specifically, to every quantum r-comb &I = (EY,...,&") of quantum channels &7, with input
systems A7, output systems B], and memory systems E{_17 we can associate a quantum channel
NE™ L Lin(A7) = Lin(B?) defined as

£lr] . or 1
rBr = EAE,_1 5B, © €A, BBy (5)

An important object associated with every quantum comb & "] is its Choi representation, which
we denote by (& M), and we define it to be the Choi representation of the associated quantum
channel A€,

VEM) agmy = Niuy g (FAlA’l ®-® FATA;) : (6)

where A; =2 A’ forall 1 <j <r, FAJ_A; = |F><F]AjA} and

da;—1

IT) ;41 = > [i,2) 4,7 (7)
=0

The Choi representation of a quantum comb is positive semidefinite, as for all quantum channels.
However, the causal structure of a quantum comb implies further constraints on its Choi represen-
tation. In particular, using the definition of the truncated combs El¥ in (3), it is straightforward
to verify that

Trp, _V(E[T])A{B{] = 7(5[7“]””_1)‘4;71]9;71 ®14,, (8)
Trp, _W(g[r];k)A}fo] — v(g[r];k_l)A’f‘lB’f—l © 14,

Vr—1>k2>2, (9)
TrB1 _7(8[7”];1)14131} = 1g4,. (10)

An important fact is that the converse statement is also true: any set {CI(L‘?B{C}Zzl of positive

semi-definite operators satisfying the constraints in (8)—(10) can be associated with an r-comb of
quantum channels.



Theorem 1 (Characterization of quantum combs [2, 19]). The set of quantum r-combs of quantum

channels with input systems Aq,..., A, and output systems Bi,..., B, is in one-to-one correspon-
dence with operators C,(Alk’f)B’f’ 1 <k <, satisfying the following constraints:
k
Clipe 20 V1<k<r, (11)
(k) | _ ~(k=1)
Teg, (O] = Cipes ®1a, Vr2k>2, (12)
1
Tr, [051331} = 14,. (13)

Furthermore, given such a set of operato?"s, the c.hannels 51%11—>B1E17 5£_Ej7!_>BjEJ_ for2<j<r-—1,
and & p | ., can be constructed as isometric channels such that the dimensions of the memory
systems Ey, ..., E._1 satisfy dg, < dA;de{C foralll1 <k<r-—1.

For convenience, let us explicitly express the conditions in (11)—(13) for the three special types
of quantum combs defined in Fig. 2.

Constraints for a measuring strategy. Using the fact that the Choi representation of the
measurement channel p— Y Tr[A%p]|x) (x| is Y, v (A®)" ® |z) (x|, we have that

YEN arpr = Z C(?gf—l ® |z)(z|B,, (14)
zeX
where _ Ta
O =Ty (e ) A(E S E )i (15)

are positive semi-definite operators corresponding to each element of the POVM for the measurement
channel. The constraint in (8) then translates to

(M ~(r=1)
ZX Ot = Cap-ipp1 @ L (16)
S

In other words, any measurement strategy r-comb is in one-to-one correspondence with operators

C’X};,l for all z € X and operators CXZ)B,Q for all 1 < k < r—1 satisfying the following constraints:
1-1 1-1
(r)@ (k)
CAXBI_lzo Ve e X, CA,fB{CEO V1i<k<r-—1, (17)
(rz  _ ~(r=1)
Z CAQB;*1 AT B! © 14, (18)
reX
Trp, (O] = OG0, Vr—12k22, (19)
Tog, [O),] =1, (20)



Constraints for a co-strategy. A co-strategy is defined by setting £' to be the preparation
channel for a state op, g, so that d4, = 1. Then, because 14, = 1, the conditions in (11)—(13)
reduce to

k k—
e .
Trp, [Cél)] =1. (22)

Intuitively, the operator 01(311) corresponds to the partial trace of the state op,p, over Ei, i.e.,

C](Bll) = TI“E1 [UBlEl]'

Constraints for a measuring co-strategy. We can combine the conditions above for a mea-
suring strategy and a co-strategy to get

Cgﬁgr_l >0 Vred, C(’“,}Bk >0 V1<k<r—I, (23)
Z (Tr)Br 1 — erll)B'rfl ® HA*y‘? (24>
rEX !

Trp, [CX?B%} C(k 1)Bk @14, Yr—1>k>2 (25)
Trg, [Cf)] = 1. (26)

In other words, a measuring co-strategy r-comb is defined by a set {C’ B’“ 1 }zex of positive semi-

definite operators such that

(rz [r]
Z CATBT 1= TrB'r |: (D(CO St)):| ’ (27)
zeX
where DEC]O ) is some co-strategy r-comb with input systems Ay, ..., A, and output systems By, ..., B;.

2.2 Combining combs

As described above, a quantum comb can be thought of simply as a multipartite quantum channel.
However, a comb is more general, because it can take as input another comb and output another
comb. Suppose we are given two combs 51[”] and 52[7"2]7 with some subset of equal input and output
systems. Let us denote the collection of these systems that are common to the two combs by Sjy,
and let us refer to the remaining (uncommon) input and output systems of 51[”] and SQ[TQ] by S1
and Sy, respectively. To combine, or link the combs means to join the common systems of the two

combs to create another comb. We denote the output of combining the two combs by
glnl o gl (28)
1 2 5
and it is the comb whose Choi representation is given by

y(E o ey s, 5, = V(EM) 515 * 1(ET ) 52500 (29)
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FIGURE 3: Four simple ways of combining strategy and co-strategy combs. In (a), we combine
a strategy 4-comb with a co-strategy 4-comb to obtain a quantum state for the systems D, and
By. In (b), we combine a strategy 4-comb with a strategy 4-comb to obtain a quantum channel
By — Dy4By. In (c), we combine a strategy 4-comb with a measuring strategy 5-comb to obtain
a quantum-classical channel By — Aj. In (d), we combine a strategy 4-comb with a measuring
co-strategy 5-comb to obtain a classical register As containing the output of the measurement
at the final step.
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FIGURE 4: A co-strategy comb D sty = Ng?;w (043), where 0 4

is the state prepared in the first step of the comb D In other words, this co-strategy

where 7(5{“])3153“ * fy(SQ[T?})SQSin is the link product of ’y(c‘:l[ﬁ]) and 7(52[7”2}), defined as

7(8{7“1])51&“ * ’7(52“2})5’2&[1 = Trg, 'V(gl[rl]);figinfy(ggz])*g?sm ) (30)

The input and output systems of the comb 51[”] o 52[7«2] depend on which of the uncommon systems

between the constituent combs 51[”] and 82[r2] are inputs and outputs. In Fig. 3, we illustrate four
possible ways of combining strategy and co-strategy combs. In Sec. 3.4, we consider more general

transformations of combs.

[

Let us elaborate on the combination of a strategy with a co-strategy. Let S(g) be a strategy -

comb with input systems Aq,..., A,, output systems By, ..., B, and memory systems F1, ..., F,_1,
and let DEZ]O_St) be a co-strategy r-comb with input systems Bj, ..., B,_1, output systems Ay, ..., A, D,,
and memory systems Dy, ..., D,_1; see Fig. 3(a) for the case r = 4. The combination of 5([;"1) and
D@t) is a quantum state for the systems D, and B,, and we use the notation
(&) Pletsty) _ i I
D, By = “(co-st) © g(st) : (31)
Note that, because the output is a quantum state, we have that
(&) Pleorst)
Pl =D ) +ED) (32)
_ plr] [r]
D(co-st)) © 7(8( ) (33)
_ [ [r] y 418
= Tr g pr V(D(co_st))B;*1A11"Dﬂ(5(st))Aqlzaf : (34)
Furthermore, if &), = (€} &2 & ) and pll = (o D2
’ (st) = \TA1—=>B1E1 YA En BByt ) YArEr1—Br (co-st) — \9A1D1» By D1 —A;Dy0
.+»Dp_ B, a,p,) then
€ty Pleonst) _ (o " !
PD,B. = (a6, 158.°Db, 1B 154D, °  °Ex B 5 )T E)- (35)

A special case of a co-strategy is the one shown in Fig. 4 for the case r = 4. This co-strategy
4-comb is defined by letting the memory systems be D = Ao A3A4, Do = B1AsAy, D3 = B1Bs Ay,

11



and D, = By ByBs. The channels D7, 2 < j < 4, are defined to be swap channels as shown, and D!
prepares a quantum state o Al Combining this co-strategy with the strategy 4 leads to

(M ,Dt](}st)) o)
PD4By = -/V’Aﬁll%]g‘lL (UA‘IL) (36)

We thus see that all strategy r-combs can be used as an ordinary quantum channel by combining
them with the co-strategy comb of the form shown in Fig. 4, which has a straightforward general-
ization to an arbitrary number r of rounds.

The following is an important fact that we use later. See |2, Theorem 12| for a closely related
result.

Proposition 1. Consider a strategy r-comb EU with input systems A1, ..., Ay and output systems
By,...,B,. Let D[;c}o-st) = (UD1A17D2D131~>D2A27 —sDph B, sD,a,) be a co-strategy consisting of
an initial pure state and isometric channels DF, with input systems Bi, ..., By_1, output systems

Aq,..., A, D, such that D, = A’l"BI_l, and memory systems Dy such that D1 &£ Ay and Dy =
Dy _1ApBy_1 for all2 < k <r—1; see Fig. 3(a)'. Then, there exists a linear operator VA{B{_l (as
a function of D) such that

(€M) y(DV) = V(T (37)

In particular,
VTV =~((D',..., Trp, oD")). (38)

Proof. We start with the fact that the co-strategy comb DIl consists entirely of isometric channels,
which implies that its Choi representation is a unit-rank operator: v(DI") = | W) (V| Br=arp,- NOW,

by assumption, it holds that D, = A{B%ﬂ". Letting S = BIflA’l" and S’ = D,, we have that
dgs = dgr, and it holds that there exists a linear operator Vg such that

W) pr=14rp, = [¥)ssr = (1s @ Ve )[[) 5. (39)

Then, the link product v(£I) (D) is

I I iy B4t oplr]
Y(EM) x (D) = TTB;—lA{ (€ )A’{B"l" (D )B{‘lA’{DT (40)
= TI'S |:’7(5[r])g%TVS’FSS’Vg/} . (41)

Now, the operator v(& [r]) 5B, can in general be decomposed as follows:

Y(EM)sp, =Y Xs@ Y}, (42)
irj

for some sets {X%}; and {YéT }; of linear operators. Using this, and making use of the fact that

Zs|D)ssr = Zg|T)ssr (43)

!'Note that we consider the system D, to be an output system of the comb DIl and not a memory system.

12



for every (square) linear operator Zg, we obtain

,-Y(g[r]) * ’Y(D[T]) = Trg [7(€[T])TSVS/FSSIVST/1| (44>
= Z Trg [(Xg)TVS/PSS/V;/} & YéT (45)
i,
= Z Trg [VS/Xg/FSS/VST,} & Yér (46)
4,
=Y Ve XLV @Y} (47)
1,7
= Vory(EM) g5, Vi, (48)

which is precisely (37), as required. Now, to see (38), we use (43) in (39) to get

Trp, [V(D[r])BI—lAgDT] =Trg/[VsT'ss VSJ[/] (49)
= TI‘S/ [VSTFSS’VS] (50)
=ViVs. (51)
Then, because
Trp, [y(D')] =7 ((D',..., Trp, oD")), (52)
we obtain the desired result. O

Remark 2. We refer to co-strategy r-combs D[(Tc]o_st ) that consist of a pure state at the beginning
followed by isometric channels as “pure” co-strategies, because their Chot representation is a unit-
rank operator of the form |¥)(¥|.

Observe that Proposition 1 holds more generally: for any operator X € Lin(A]B]) and any co-
strategy r-comb D[(Z]o_
A{B{fl, and memory systems Dy, such that D1 = Ay and Dy, = Dy,_1ApBr_1 for all2 <k <r-—1,

it holds that

st) with input systems By ..., B._1, output systems A1, ..., A, D with D, =

[r] _ T
X % V(D(co-st)) = VATBI_lXA{BTVA{B{_“ (53)
where the operator VA{BI_l satisfies
V'V =~((D',..., Trp, oD")). (54)

We can further generalize Proposition 1 by assuming that the co-strateqy comb DU} consists of
general linear maps, not just quantum channels. In this case, with the same assumptions on the
dimensions of the systems Dy, 1 < k < r, we have that instead of isometric channels it suffices
to take each map DF to be of the form DF(:) = Yk(-)Z,i, where {(Yi, Zi)}j,—, are pairs of linear
operators. Then, it follows that the Choi representation of D) is a unit-rank operator of the form
~(DI') = “IJM(I)‘B{*A{DT? and there exist operators Vs: and Wgr such that

[W)ss = (Ls ® Ver)|D)ssr, (55)
[®)ssr = (Ls @ Wgr)|I) g5 (56)
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The steps in (44)—(48) and (49)(51) follow through analogously to before, and we obtain

VW =~((D',..., Trp, oD")). (58)

So far, we have discussed combining combs via composition. Let us now briefly discuss taking
tensor products of combs. Roughly speaking, taking the tensor product of quantum channels cor-
responding to applying the channels in parallel, i.e., at the same time. This idea can be used to
define what we mean by a tensor product of quantum combs. Specifically, let £ = (Y. &)
be an r-comb with input systems A7, output systems Bf, and memory systems E’lﬂfl. Let Ml =
(MY, ..., M") be an r-comb with input systems C, output systems D7, and memory systems
My ~1. Then,

EMNgomMil = E oM, ... "0 M") (59)

is an r-comb with input systems AjCY, output systems B D7, and memory systems E7 _le L see
Fig. 5(a) for an illustration. In general,

g[’r’l] ® M["'Q] — .F[TJ}, r/ = maX{Tl, T2}7 (60)

is the result of taking the tensor product of combs with different lengths r; and r9. For example, if
r1 < rg, then

, EloMi j< min{ry, ro}
J < )
7 { M j > min{rl,rg}, (61)
so that
EMlg MRl = (o ML 2@ M?, ... EM @ M, ML M™), (62)

where for the channels after the r5' time step we have suppressed the identity channel acting on
the final output system of £, We can also take the tensor product of time-shifted combs. For
example, if we shift the comb M2 by one time step and then take the tensor product with £l
we obtain

gl M+t — (gl 2@ MY, ... EM @ ML M™, L M™), (63)

which is a (r2 + 1)-comb; see Fig. 5(b) for an illustration. We refer to |2, Sec. IV.B] for a more
detailed discussion on the tensor product of quantum combs.

3 Information quantities

We now proceed to defining information quantities for quantum combs. We start with quantities
induced by a generalized divergence for quantum states. We then define fidelities for quantum combs
using fidelities for states before proceeding to a definition of the Schatten a-norm for quantum combs.
We also discuss quantities defined using the concept of amortization, and we discuss combining
strategies in the context of data processing.
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FIGURE 5: Tensor products of the quantum 3-combs EBI = (E,E2,83) and MBI =

(MY, M2, M?3). (a) The tensor product ¥ @ M is another 3-comb. (b) The tensor product
of £B with the time-shifted comb MBI*! leads to a 4-comb.
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3.1 Generalized divergence-based quantities

A generalized divergence D [32, 33| is a function (p,o) — D(pl||o), where p and o are quantum
states, that satisfies the data-processing inequality:

DN (p)|N(2)) < D(pllo), (64)

where N is any quantum channel. The well-known quantum relative entropy [34] is an example of
a generalized divergence, as are quantum Rényi relative entropies; see [35] for a review. The trace
distance %H p — ol|1 is also a generalized divergence. Intuitively, a generalized divergence quantifies
how far apart two quantum states are, although a generalized divergence is not required to be a
distance/metric in the mathematical sense.

Given a generalized divergence D on quantum states, as defined above, we have the following
definition of the generalized divergence for quantum channels ' and M [36]:

D(&[|M) = sup D(Ea-(pra)lMa—5(prA)); (65)

PRA

where the optimization is over quantum states pra, with the dimension of R unrestricted in general,
although it is straightforward to show that it suffices to let R = A. In other words, in order to
define a generalized divergence between two channels, we ultimately resort to the corresponding
generalized divergence for states by acting with the channels on one-half of a bipartite state pra,
over which we optimize. The diamond distance ||V — M|, [37] is a well-known example of a
generalized divergence for quantum channels.

By noting that a quantum channel is nothing but a strategy 1-comb, and by noting that
Na_p(pra) is the result of applying the co-strategy 1-comb defined by the preparation channel
for pra, we see that the procedure to calculate D(N||M) is simply a special case of the combina-
tion of a strategy with a co-strategy depicted in Figure 3(a). With this insight, the generalization
of (65) to quantum strategy r-combs, r > 1, is immediate; see [38, Definition 1]

Definition 2 (Generalized divergence between quantum combs). Let r > 1. Given two strategy
r-combs E and MU with input systems A7 and output systems Bj, we define the generalized
divergence between them as follows:

€Wl D Mo )
(co-st) H ( t) (66)

D, (g[r]HMM) = s[rt]1p D (pDTBT D, B,

(co-st)
[r]

where the optimization is with respect to r-round co-strateqy r-combs D(CO_St) with input systems

Bfl and output systems A} D,; see Fig. 3(a). Using Theorem 1 along with (32), the generalized
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divergence is given by the solution to the following optimization problem:
maximize D (’y(é’[r]) % C(r) H”y(./\/lm) * C(T))

subject to C) >0,

r r—1
TrArD'r [CJ(BI)_IAIDJ = C(BI—Q)A';—l ® ﬂ'Br—l?
C(T‘—l) Z 07
(k) (k—1) (67)
Tra, [CB’f’lA’f] = CBk 2 gkt ®1p, ,,

cChk=1>0, r—1>k>2,

Tra,[CY)] =
c® > .

Note that for r = 1, the definition above reduces to the definition in (65) for the generalized
divergence between channels, because channels are 1-combs.

Intuitively, the generalized divergence between two strategy r-combs is given by taking the
divergence of the output states obtained by combining the strategies with a compatible co-strategy.
This method is natural, and it has been used in prior work [39] to define the max-relative entropy and
the conditional min-entropy of quantum combs. This definition is also natural when considering the
problems of discrimination and hypothesis testing of quantum combs, which we discuss in Sec. 3.5.

Proposition 3. Let r > 1, and consider two strategy r-combs EV and MU with input systems A7
and output systems By. When calculating the generalized divergence D, (5[’"] HMM), it suffices to
optimize with respect to isometric co-strategies, i.e., co-strategies D[(Z]O_St) = (0D1A17D2D1B1—>D2A27

-, Dp, 1Br71—>DrA7‘) in which the starting state op, 4, ts pure and the channels Dk, 2 <k <r,
are isometric channels, with the dimensions of the systems Dy, 1 < k <r, given by dp, = da, and

dp, =dp, ,dp, ,da, for all2 <k <r.

Proof. Consider an arbitrary co-strategy as depicted in Fig. 3(a), which consists of a state op, 4,
and quantum channels D%kil Bi1—DyAx for 2 < k < r. Now, it holds that the state op, 4, has
a purification g, p, a,, so that op, a4, = Trg,[¥r,D,4,]. Furthermore, by the Stinespring dilation
theorem (see, e.g., [40, Corollary 2.27]) there exist isometries V5 such that
Dy_1Bi_1—Rp Dy Ay

k k k
DDklekfl—)DkAk () = TrRk [VDklekfl—)RkaAk ()(VDklekfl—)RkaAk)T]’ (68)
The pure state ¥, p, 4, and the isometries VDkki1 By_1—R,DyA, define another co-strategy r-comb

Al

(co-st) with input systems Bf_l, output systems A]R]D, and memory systems DI_l such that

€MDl o) MILDEL )
D <pDTBT 2 PD, B, (et
(MBI )
= D <T‘I'R'{ |:PRTD B( ) :| H |:pR1D B( R :|> (69)
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(g[r] DEZ]() st)) (M[T] ’ﬁgz]o-st))
<D (pRTDTBT HPR;DTBT ) (70)

where the inequality is due to the data-processing inequality for D. Now, because the co-strategy
DEZ]O_SQ consists of a pure state and isometric channels, its Choi representation is a rank-one op-
erator of the form |¥) (V] BI'ATRID," By the Schmidt decomposition theorem (see, e.g., [40, The-
orem 2.10]), the dimension of R} D, need not exceed the dimension of B{"*A}. Let D. = R} D

Then, the Vectlor |W) B;{—l ArRID, = |W) BIArD, corresponds to the Shm r-epresen-tatlon of a pure
co-strategy (¢ A Di’uDi BiosDjAy " ]g,ril Br_1—D, By-)’ where the U" are isometric channels such
that D} = A; and Dj, = D) _, Bj_1Ag. Then, by (70), the generalized divergence between the states
arising from this co-strategy is never less than the generalized divergence arising from the original

[r]

co-strategy D( . It therefore suffices to restrict the optimization to such pure co-strategies, and
co-st)

because the systems D} in this co-strategy have the dimensions as specified in the statement of the
proposition, the proof is complete. O

As mentioned above, quantum channels are strategy 1-combs, which means that, for » = 1, the
definition in (66) coincides with the definition in (65). Also, because every quantum strategy comb
can be used as an ordinary quantum channel via the co-strategy illustrated in Fig. 4, we immediately

have that
D, (MMM > Dy (WE AT, (71)

where the divergence D is the generalized divergence for quantum channels defined in (65). Another
simple consequence of definitions is the following fact.

Proposition 4. Given any two strategy r-combs EV and MUV, with v > 1, it holds that the
generalized divergence between the truncated combs EUF and MU (recall (3)), as well as the

combs EWF and MK (recall (2)) satisfy

D, (g[r]HM[r]) < D, (g[l;k]HM[l;k]>’ (72)
i (g[?"];kHM[T];k) < Dy (g[l;k]HM[l;k’]> (73)
foralll <k <r.
Proof. For any co-strategy r-comb DEC]O st) = = (0,D!,...,D") in the optimization for D, (5[7“] HMM),
we use (35) to see that
r] plrl
p('frBrD(co st)) _ (57’ o DT 0---0 gk-i—l o Dk—l—lo
£ oDr o0 D20 £1)(0) (74)
T ' (8[1 k] D[iok]st )
= (£"oD" 0- 0 £FF1 o DHHY) <pDkBkEk‘ ’ ) ' (75)

(7]

: MID os1)) L .
An analogous expression holds for pp, g (co=t” Then, by the data-processing inequality for D,

[r] [r]
< (8 D(co qt))H M[ ] D(co Qt))>
PD,B, PD,B,
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(8[1 + ,Dgco ]st)) (gl +l DECO ]st))
<D (pDkBkEk [ (76)

(T )y (€M)
< sup D <pDkBkEk ' H PD,ByEy ' (77)
Flk)
(co-st)
= Dy, <g[1;k}HM[1;k]) . (78)
Since the co-strategy r-comb DEZ]O_St) = (0,D',...,D") was arbitrary, we obtain the inequality in

(72). To see the inequality in (73), consider any co-strategy k-comb YSE’ZL_S,E) in the optimization for

D, (g[r}?kHM[T];k). By observing that
Y(EMH) = Trg, [y(MH)] (79)

the data-processing inequality for D yields

ik DLkl ik Dk
< (5[ i D(co st) ) ‘ (M[ ik D(co at))>

PD, By Pp, B,
= D (3(EM) # 4 (B, ) [Y(MI) £ 4 (B ) (80)
= D (Tr, [1(EMH)] <Dl

Trg, [y(MI)] < (B ) (81)
< D (y(E0H) 1y (B v (M) 5 4B )). (82)

Then, because 5@)&) is an example of a co-strategy in the optimization for Dy (5[1;]“] HM[l?k}), we
obtain the inequality in (73), which completes the proof. O]

Note that the defining data-processing property of a generalized divergence, shown in (64), is
enough to conclude that all generalized divergences are isometrically invariant: for all isometries V'
and for all states p and o,

D(VpV|[VoVT) = D(pl|o). (83)

Using the isometric invariance of generalized divergences leads to an alternate expression for the
generalized divergence between r-combs.

Proposition 5. For all v > 1, and for all pairs EM, MU of strategy r-combs, the generalized
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divergence D, (EM| M) is the solution to the following optimization problem:
maximize D (\/ﬁ'y(é’[r])\/ls“\/ﬁfy(/\/l[r])\/ﬁ)
subject to PAIBI—I >0,

— -1
Tra, [PAqBIA] = CBfQAI*l ® 1B,

C(T*l) 2 O,
(k) (k—1) (84)
Tra, [CBfflA’f] = CBllc72A11c71 ®1py_ 4,

Cck-1) >0 r—1>k>2,
Tra,[CY)] =1,
cM > .

Proof. First, we use the fact that in the optimization with respect to co-strategies it suffices to
take co-strategies consisting entirely of isometric channels such that the final output system satisfies
D, = A{Bfl and the memory systems satisfy D1 = A; and Dy, = Dy_1ApB_1 forall2 < k <r—1;

[r]

see Proposition 3. Then, by Proposition 1, for any such co-strategy D ) We have that

(co-st
YEM) x (D) ) = VeV, (85)
VM) ey (D)) = VM)V (86)

for a linear operator VA; B that satisfies (38). Consider now a polar decomposition of V as

V = U+/P, where U is unitary and P is positive semi-definite. Then, V'V = P, where we have
used the fact that P is Hermitian, which means that

P =~((DY,..., Trp, oD")). (87)
Finally, by isometric invariance of the generalized divergence D, we obtain
D((EM) /(D) ) M) 5 4(Dicosty) (88)

= D(VAy(ENVTVA(MITVT) (89)

- D (U\/fy(s[ﬂ\/ﬁmHU\/E(MW)\/TDUT ) (90)

-D (x/ﬁy(sm)\/ﬁ||x/ﬁy(/\4w)\/ﬁ) . (91)

By (87), and because P is Hermitian, the first constraint in (67) can be written as

Tea,p, [C) s 4o, | = Toa, [Py (92)
= Tra, [Py pr1] (93)
-1
= gﬁ)Arl ®1p, . (94)
The result then follows. O
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Before moving on, we mention in passing that to every generalized divergence for channels, as
defined in (65), there is an associated so-called amortized channel divergence [41] defined as

DAWNM) = sup [DWNasp(pra)|Masp(ora)) = D(prallora)l, (95)

PRAORA

where the optimization is with respect to states pra, ora, with the dimension of R unrestricted in
general. Unlike in the generalized divergence for quantum channels, the optimization here cannot
in general be restricted to pure states with R = A. If D satisfies D(p||p) < 0 for all states p, then

DAV M) = DV M). (96)

The generalized divergence for r-combs can be extended to an amortized quantity as follows:
for all strategy r-combs Il and MU with input systems A7 and output systems BT,

A1l aqlr (EVDEL ) || MILFCL )
D! (5[]”/‘4”) = sup [D <pDTBT( : (pDTBT ( ”) —D(op,aillTpiay) | (97)
D’I‘

(co-st)?

]:[7']

(co-st)

where the optimization is with respect to co-strategy r-combs Dl (0p,4,,D%,...,D") and

(co-st) =

[r]

(co-st)
D71 see Fig. 3(a). Because the optimization in (95) is in general unbounded, the optimization in
(97) is also unbounded in general, meaning that a result analogous to Proposition 3 does not hold
in general.

= (Tpy Ay, F2,...,F") with input systems Bffl, output systems AjD,, and memory systems

3.2 Fidelity-based quantities

The fidelity between two quantum states p and o is defined to be [42]

Flp,0) = lVaval. (98)
We also let

VF(p,0) = VFp.o) = IlVpvals (99)

denote the “root-fidelity”.

As with generalized divergences, the fidelity obeys a data-processing inequality: for all pairs p, o
of states, and for all quantum channels N,

F(N(p),N(o)) = F(p, o). (100)

The fidelity between two quantum channels A" and M is defined to be [43]

FN, M) = inf F(Naop(pra), Ma—p(pra)), (101)

PRA

where the optimization is with respect to states pra, with the dimension of R unrestricted in
general, although it is straightforward to show that it suffices to let R = A. Note that this defintion
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is entirely analgous to the definition of the generalized divergence between two channels. Therefore,
following the same line of reasoning as before, we arrive at the following definition of the fidelity
between two strategy r-combs.

Definition 6 (Fidelity between quantum combs [44]). Let r > 1. Given two strategy r-combs
El and MU with input systems A7 and output systems By, we define the fidelity and root-fidelity
between them as follows:

enol ) (MULDEL )
Fy (€M M) = int FGL&“MN%ﬂrmw), (102)
D
(co-st)
= eMDPl ) (MELDEL )
Fr(g[r]7M["']) = [1r€1f \/F (p(Dr : (co-st) 7PDTBT (co-st) ) (103)
D
(co-st)

[r]

(co-st)
output systems A]D,; see Fig. 3(a). Using Theorem 1 along with (32), the fidelity is given by the
solution to the following optimization problem:

where the optimization is with respect to co-strateqy r-combs D with input systems Bfl and

minimize F (y(EM) « ¢ y(MIT) x 01)

subject to C) >0

r r—1
TrATDT I:C(B;_IAIDT] = C(BI_;A?{_l ® :H'Br—17
C(r—l) > (),

(104)

k k—1
TrAk [C(Bf)*lA’f] = C(B{C72)Allc71 ® ]lkau

ck=1) >0 r—1>k>2,
1

Tra, [CV)] =1,

c > 0,

with an analogous optimization problem for the root-fidelity.

Remark 3. Due to the data-processing inequality for the fidelity between states, by arguments
analogous to those in the proof of Proposition 3, it suffices in (102) and (103) to optimize over co-

strategqy r-combs D[(Tjo—st) = (oDlAl,D%lBlﬁDsz -»Dp B, D) in which the starting state

0D, A, 1S pure and the channels Dk 2 <k <r, are isometric channels, with the dimensions of the
systems Dy, given by dp, = da, and dp, = dp,_,dp,_,da, for all2 < k <r. Then, because of the
fact that the root-fidelity can be calculated using an SDP, as shown in [45, Theorem 7.1.5] and [46],
when we replace fidelity with root-fidelity in (104), we obtain an SDP.

Also, because the fidelity is isometrically invariant, we get that the fidelity between quantum combs
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can be calculated using as the solution to an optimization problem analogous to the one in (84):

minimize F (\/ﬁy(é'[r])\/]?, \/fv(MM)\/TD)

subject to Py gr-1 >0,
1-1

TrA'r [PAfoil] = C(r_l) ® ]lBr—N

B2
C(rfl) > (),
. o (105)
TrAk [C(B’f)*lA’f] = 0(31;2)1411@71 ® ]lkaw
Ck-) >0 r—1>k>2,
1
Tra, [01(41)] =1,
cM > 0.
3.3 Schatten a-norms
The Schatten a-norm of a linear operator Y, for 1 < a < 00, is defined as
N
1V ]|o = (ﬁ [(YU’)?D “ 1<a< oo, (106)
¥ e = lim [[¥]o. (107)

In order to generalize the notion of Schatten a-norm to r-combs, we use the same reasoning that
we used to define the generalized divergence and the fidelity between r-combs. Specifically, we take
a given strategy r-comb E'l, apply a co-strategy r-comb DP;]O_St) to it as in Fig. 3(a), then take the
Schatten-norm of the resulting quantum state.

Definition 7 (Schatten norm of a quantum comb). Given any operator X € Lin(A]BY), for 1 <
a < oo we define its strategy Schatten a-norm as

| Xra = sup | X 7D )llo- (108)
'DEZ](}St)

where the optimization is with respect to co-strategy r-combs D[(Z}O_St) = (GD1A17D2D131—>D2A2’ ceey

Dp. B, _,-p,a,) (see Fig. 3(a)) in which the starting state op,a, is pure and the channels Dk,
2 <k <, are isometric channels, with the dimensions of the systems Dy, given by dp, = da, and
dp, =dp, ,dB,_,da, for all2 <k <r. Then, given any strategy r-comb El) consisting of arbitrary
linear maps with input systems A} and output systems By, for 1 < a < oo we define its strategy
Schatten a-norm as

||5[r] ro = ||7(5[T])”r,a- (109)
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By Theorem 1, || X ||y« is the solution to the following optimization problem:

mazimize || X % C7)|4

subject to o) > 0,

1
TrAT-D7- [ng—lA;-Dr] Cg:r Z)A'r 1 ® HBT717
C(rfl) > 0’

(110)

TrAk [ngk)flAk] = Cgck 12)Ak 1

Ck-) >0 r—1>k>2,

® 1B,y

Tra,[CY)] =1,
c® >,

Remark 4. Note that in (108), X can be any linear operator, not just a Hermitian or a positive
semi-definite operator. In particular, the definition of the Schatten a-norm of an r-comb applies to
quantum combs consisting of general linear maps, not just quantum channels or completely positive
maps. In this more general setting, however, one should in principle define the norm using an
optimization over co-strategies consisting of arbitrary linear maps, not just quantum channels, but
by doing so we lose the all of the constraints in (110). We thus leave the optimization in (108)
restricted to co-strategies consisting entirely of quantum channels.

In this context, let us also mention that the definition in (108) in the case o = 1 has been defined
already in [2, 29, 47] and denoted by ||-||or in [29]. The definitions therein were given based on the
operational task of state discrimination, and hold only for Hermitian operators. If the operator X
in (108) is Hermitian, then || X||1,o = || X|lor-

Because the Schatten a-norms are isometrically invariant for all 1 < a < oo, we obtain a result
analogous to Proposition 5.

Proposition 8. For all Hermitian operators X € Lin(A}]BY), the strategy Schatten a-norm || X||,
can be calculated as the solution of the following optimization problem:

mazmize  |[VPXVP|a
subject to P 1t >0,

TrAr [PAEBI_I] C( 1" Q)Ar 1 ® ]]-BT- 19

C(’r‘—l) Z O7
(k) (k—-1) (111)
Tra, [OBic—lAk] = CBk 24k ® 1, .,

Ck=D >0 r—1>k>2,
Tra, [C)] =1,
c® >,
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FIGURE 6: The most general transformation of the quantum channel N4 ,p to a quantum
channel A’ — B’ via a “superchannel”, which is the strategy 2-comb (D!, D?).
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FIGURE 7: (Top) Transformation of the strategy 3-comb & B into another strategy 3-comb via
combination with the strategy 6-comb 71, which consists of pre- and post-processing of each

of the channels £ in the comb £, (Bottom) Any co-strategy Dgi’]o_st)

comb, when combined with 71!, is a co-strategy for the original 3-comb £[],

for the transformed

Proof. The proof is analogous to the proof of Proposition 5, except that we make use of the gener-
alization of Proposition 1 explained in Remark 2, specifically, (53) and (53). O

3.4 Comb transformations and data processing

The defining property of any generalized divergence D for states is the data-processing inequality.
Having defined the generalized divergence D, for r-combs, it is important to understand what
analogues of the data-processing inequality hold for D.,..

Let us first note that, given a quantum channel, it is known [48] that the unique way of trans-
forming it into another channel is via a “superchannel”, as depicted in Fig. 6, which in this context
is simply a strategy 2-comb that consists of a pre- and post-processing of the given channel with
two other channels. However, the transformation from an r-comb to another r-comb (with r > 1)
can be much more varied in general. We now discuss two possible ways of transforming quantum
combs and show how these transformations lead to a data-processing inequality for the generalized
divergence D,..
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One method for transforming an r-comb to another r-comb is directly analgous to the trans-
formation of quantum channel shown in Fig. 6. As shown in Fig. 7 for »r = 3, we can transform a
given r-comb £ into another r-comb by combining £ with a comb 712"} that consist of a pre-
and post-processing of each channel in £, For this type of transformation of a quantum comb, we
obtain the following data-processing inequality.

Theorem 5 (Data-processing inequalities 1). Given any two strategy r-combs E and MU, con-
sider the r-combs TR o EI and TR o MU resulting from the combination of each comb with an
arbitrary 2r-comb T2 of the form shown in Fig. 7, in which each channel of the combs EM and
MU undergoes a pre- and post-processing. Then,

D, (770 |77 0 M) < D, (V1]|mM) (112)
F, (TW o £ Tl 6 MW) > F, (5“1, MW) . (113)

Proof. We base our reasoning on the case r = 3 by referring to Fig. 7, with the understanding that

[r]

this reasoning extends to arbitrary r. Consider any co-strategy r-comb D ot) for the transformed

(co-
r-combs T2 o € and 71 o MU1. From the bottom part of Fig. 7, it is clear that 75@0_81:) =
DEZ]O_St) o T is a valid co-strategy for £V and M. Therefore,
7] 2r T [7] 2r T
D (D(co-st) © T[ } © 8[ ]||D(c0-st) © T[ ] © M[ ])
_ 3] || ("] r
=D (D(co—st) °© 5[ ]HD(co—st) °© M[ ]> (114)
r] 7] (| 77] r
< sup D (Dl ) 0 €MD ) 0 M1) (115)
D
(co-st)
=D, (M M), (116)
Because the co-strategy DEZ]O_St) was arbitrary, we obtain
D, (7‘[27“] o &l HT[M ° MM)
= swp D (D, o T o ellDl] o7 o ml) (117)
'D[T]
(co-st)
< D, (M||mM) (118)
as required. Analogous reasoning applies to the fidelity. O

Remark 6. By applying similar reasoning as in the proof above, we can also prove the following
data-processing inequality for the Schatten a-norms for all o € [1,00]:

IV(TED) 5 X o < 1 X e (119)

for all linear operators X € Lin(A}BY}), where TP is the (2r)-comb shown in Fig. 7.
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FIGURE 8: (Top) Transformation of the strategy 4-comb & [ into a strategy 3-comb via com-
bination with the strategy 5-comb F1!. (Bottom) Any co-strategy Di]o_st) for the transformed

comb, when combined with 1!, is a co-strategy for the original 4-comb £

The transformation shown in the top part of Fig. 7 takes an r-comb and transforms it into
another r-comb. It is also possible in general to take an r-comb and transform it into an 7’-comb
with 7/ different from r. One example of such a transformation is shown in Fig. 8, in which a 4-comb
is transformed into a 3-comb. This type of transformation can be generalized in order to transform
any r-comb into an (r — 1)-comb. We then obtain the following data-processing inequality.

Theorem 7 (Data-processing inequalities II). Given any two strategy r-combs El and MU, con-
sider the (r — 1)-combs Frrtllo gl gnd Frtll o MU resulting from the combination of each comb
with an arbitrary (r 4+ 1)-comb FUr+1 of the form shown in Fig. 8. Then,

L (Frlo gl Frttl o mlT) < D, (€11 M0) (120)
L (Firetlo gl Firitlo pmiT) > F (g1, M) (121)

Proof. We base our reasoning on the case r = 4 by referring to Fig. 8, with the understanding

that this reasoning extends to arbitrary r. Consider any co-strategy (r — 1)-comb DECO Jt) for the

transformed r-combs T o I and 7+ o M), From the bottom part of Fig. 8, it is clear that
Dl —prl T+ is a valid co-strategy for £['M and M. Therefore,

(co-st) = (co-st)

D (Di 1 o FIHlo el DI 1) o Firvtlo i)

(co-st) (co-st)

o €015

(co-st) co-st)

- D (D[ y o MW) (122)
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< sup D (DY, 0 DI o M) (123)

5 (co-st) )
IDECL—st)
- D, (5[’“] HMM) . (124)

[r—1]

(co-st) WAS arbitrary, we obtain

Because the co-strategy D,

D,y (FIH o gl FIHl o )

= sup D (0{ Y 0o €MDY o 2o ) 129
,D['rfl]
(co-st)
< D, (M m), (126)
as required. Analogous reasoning applies to the fidelity. O

Remark 8. By applying similar reasoning as in the proof above, we can also prove the following
data-processing inequality for the Schatten a-norms for all o € [1,00]:

IV(FIH) 5« Xlr—1,0 < 11X [lras (127)
for all linear operators X € Lin(A}BY), where FI'+Y is the (r + 1)-comb shown in Fig. 8.
Another type of comb transformation, which we discussed in Sec. 2, is taking the tensor product
of combs.

Theorem 9. Given any two strategy r-combs EM and MU, for all r-combs G it holds that
D, (gm  £N]| gl ®M[r]) —D, (gmHMm) : (128)
F, (QM ® el gl MW> —F (EW,MW) . (129)

Proof. Suppose that £ and MU have input systems A7, output systems B, and memory systems
E”l"_l, and suppose that GI'l has input systems C7, output systems D7, and memory systems M -1
Then,

D, (g[[ﬂ ® g[r]Hg[T] Q M[T])

= swp D (D] o (M wen) DL, o (6M o MPT)), (130)

(7]
D(co—st)

[r]

where the optimization is with respect to co-strategy r-combs D(Co—st) with input systems BIlefl

and output systems AJCT7D,.. A particular choice for a costrategy is a tensor product co-strategy

D[T](CO t) ®D[T]( comst)? where DET]( ) has input systems B}~ L and output systems A} K, and DM(CO_SU
has input systems DT_1 and output systems C]L,. Then,
[7] [r] r T _ 7] T 7] T
(Pl o) ® Dhfeony) © (6 @ €)= (Dl ey 0 61 © (Dl 0 €7) . 130)
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with an analogous expression involving M{"l. Then, because the generalized divergence D satisfies
D(t®p|lT®0) = D(pl||o) for all states p, o, 7 by virtue of the data-processing inequality, we obtain

D(#y ) (05) | (o 7)o (1007 02
- (( L (co-st) © g[r) ( 3 o) © E[T) | ( (cost) © 9 ﬂ) © (Dg](co-st) ° MM)) (133)
=D (D}, 4 0 €MDY} 0 M) (134)

Because DY ](CO ) 18 arbitrary, we can optimize with respect to plr ](CO ) to obtain
D, (g[’“] ® Mg & MW) > D, (SW H/\/l[’"]> : (135)

where the inequality is due to the fact that we restricted the ourselves to tensor-product co-strategies.

[r]

(co-st) in the optimization

Now, for the reverse inequality, consider for any choice of co-strategy D;.
n (130) the combination

oGl (136)

co st

Observe that this combination is a co-strategy r-comb with input systems B ~1 and output systems

AT D! Tt is therefore a valid co-strategy 5@0-50 in the optimization for D, (5 [r] HMM). Therefore,

D (D)o (6" 0 €71) D, o (671 & 1))

(co-st)
=D <DEZ]O st) E[T] HD[CO st) © MM) (137)
< sup D (Dl © EMNIDE, oy 0 M) (138)
D(ZO—st)
=D, (g[ﬂHM[r]) , (139)

[r]

Because the costrategy D(CO_St) was arbitrary, we obtain

D, (Q[T] ® &g & MW) <D, (SW HM[T]) , (140)
which completes the proof. O

Remark 10. The reasoning in the proof of Theorem 9 can be applied to conclude the more general
statement that

D, (g[r'] & £I||g"] @MM) - D, (5[7“]HM[T]) ’ (141)
for all v'-combs Gl where " = max{r,r'}.
3.5 Application to hypothesis testing

We now discuss hypothesis testing in the context of quantum combs/quantum causal networks.
The task of ordinary (asymmetric) hypothesis testing (see, e.g., [49]) is to distinguish between two
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“hypotheses”, respresented as quantum states p and o, via a binary measurement given by a POVM
{A% A'}. The goal is to minimize the so-called type-II error Tr[A%c] while maintaining the type-I
error Tr[A!p] below a specified threshold € € [0, 1], i.e., Tr[A1p] < e. The minimum type-II error,
obtained by optimizing over all binary POVMs, is given by the hypothesis testing relative entropy
[50-52:

D3 (pllo) == —log, AOizI\11f>0 {Tr[AOJ] CTr[Alp] < e, A+ AN = 1}. (142)

Observe that this optimization problem (without the logarithm) is an SDP.

The hypothesis testing relative entropy is a generalized divergence, meaning that we can extend
its definition to quantum combs using Definition 2. Doing so, we obtain the following.

Proposition 9. Let r > 1. Given any two r-combs Er and M), for all e € [0, 1] their hypothesis
testing relative entropy D%, (SMHM[T]) = —logy aopt, where agpt ts the solution to the following
optimization problem, which is an SDP:

minimize Tr[P%y(M [r] )]

subject to Tr[Ply(EM)] < e,

PO’ Pl Z 07
0 1 _ ()
Paypy + Pagpp = Opror p @ 1
c >0, (143)
k k—1
Try, [O(Bf)_lA’f] = C(Bf_z)A’f_l ® g, ,,

Cck=D >0, r>k>2,

1¥A1y:gg}::1,
cl > .

Proof. Let the r-combs £l and M) have input systems A7 and output systems B]. By definition,
we have

D%x(gmHﬂﬂﬂ)=:??pD%(éig?M)MgﬁQDM» (144)
(co-st)
= sup Dy (1(D(ipy) *1ED (Dl ) =2 (M) (145)
D(ZO—S(Z)
_ _ : 0 7] [r] .
—;ﬁp< b&mggﬁﬁﬂA<%D@ﬁﬂ*%WlD]~
(co-st)

Tr (AL (4(D[L ) #9(EM)] < A+ AT =1}) (146)
= —log, inf {Tr [AO (’y(DK]O_St)) * fy(./\/l[r]))} :

Tr (AL (4(D[L ) +9(EM)| <o A+ A =1} (147)
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[r]
(co-st)

output systems AjD,, and memory systems DI_I. Now, for any such co-strategy,

where the optimization is with respect to co-strategy r-combs D with input systems B’lﬂfl,

Tr {A%TBT (’y(DEZL_St))BgflA;DT * 'V(M[r])AfB{ﬂ

r r TATB'r"*l
=Trp, B, {A%TBT Tr prpr- [7(Dgc}o-st))B{IA{DT’V(M[ sy ” (148)
r Tarpr=1
=Tr [Pg;B{’Y(M[ })A;%f } ) (149)
where
P} pr = Trp, [AODT YD ) prar Dr] . (150)
Similarly, we have
Tr [A}DTBT (WDEZ]O-st))B{—lAIDT * V(E[T})A’{BI)}
” TA"’BT71
where
Plepr = Trp, [A})T YD g4 DT] . (152)

Note that both P? and P! are positive semi-definite. Also, using the fact that A° + A! = 1, we find
that

ngB{ + P}l{B{ = Trp, [W(DEZ]O_S@)} ® 1p,. (153)
[r]

(co-st) is a co-strategy r-comb with input systems BI_l and output systems A7 D,., it

Now, because D

holds that Trp, [V(DEZ]O_S”)} is the Choi representation of a co-strategy r-comb with input systems

Bfl and output systems A7]. Therefore, letting

[r] —
Trp, [’Y(D(Co-st))] = CBI’lA{’ (154)
and using the constraints for a co-strategy in (21)—(22), we obtain the desired optimization problem.

Because of the linear objective function and the linear and semi-definite constraints, it is manifestly
an SDP. n

Let us now briefly discuss the case of hypothesis testing of multiple hypotheses in the “symmetric”
setting, i.e., in which we consider the average error/success probability instead of individual errors.
We mention that discrimination between two combs has been considered already in [2, 29, 47].

Suppose that an agent has multiple-round access to a quantum device, but the agent does not
know with which device they are interacting. All the agent knows is that the device is picked
randomly from a finite set X of devices and that the devices can be described mathematically by
quantum r-combs Sa[;r], where r is the number of allowed rounds. Furthermore, each device is picked
with probability p(z), where p : X — [0,1] is a probability distribution. The agent’s task is to
guess which device they are using. How should the agent proceed? The most general thing that the
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agent could do is interact with the device via a co-strategy r-comb followed by a measurement of
the resulting quantum state. They can then use the measurement outcome to make a guess about
the device. For any co-strategy DEZ]O_St),

problem for the following ensemble of states:

@l
{(p(x),pDTBr (o=t : (155)
reX

for which the optimal guessing probability is [53, 54]:

the problem reduces to the multiple-state discrimination

€l )
sup Z p(z) Tr [A%TBTPD B oY ] ) (156)
AP0 VoeX 13 e

By optimizing this quantity with respect to all possible co-strategies, we obtain

CR=
pguess({(p<x)7 g:z[:ﬂ)}) = sup Z p(‘r) Tr |:AIDTBT/)DTBT ( K . (157)

DE?O»SO » TEX
AT>0 VzeX

By following the reasoning in the proof of Proposition 9, it is straightforward to show that this
optimal guessing probability is equal to the solution of the following optimization problem, which
is an SDP:
maximize Z Tr[PP~(EM)]
zeX
subject to P*>0 Vaxze X,

T _ ()
Z Pa;py = CB;—lA; ® 1.,

TeEX

¢t =0, (158)
k k—1

TrAk [C(Bf)*lA’f] = C](B{c—;Allcﬂ ® ]lkau

ck=D>0, r>k>2,

Tra, [cgll] —1,
c > .

The optimal guessing probability, as given by the optimization problem above, leads to a gen-
eralization to quantum combs of the conditional min-entropy for classical-quantum states, based
on the fact that the conditional min-entropy of a classical-quantum state is related to the optimal
guessing probability for multiple-state discrimination [55]. The conditional min-entropy has already
been defined for quantum combs in previous work [39].

4 Resource measures

In the previous section, we considered various general quantifiers for quantum causal networks. Let
us now consider quantum causal networks as resources, and use the measures defined in the previous
section to quantify their resourcefulness.

32



A resource theory is defined by a particular set § of free objects that represents constrains on
what can be achieved in a particular physical setting. Here, the free objects consist of a subset of
quantum channels, i.e., § = §(A — B) is the subset of quantum channels from a given system A to
a given system B. This free set should satisfy the following axioms [20, 22, 24]:

e [dentity: The identity channel id4 for a system A is contained in the set F(A — A).

e Closure under composition: For systems A, B, C, if M € F(A — B) and N € (B — C),
then N oM e §(A— C).

o Stability under tensor product: For systems A, B, C, if M € F(A — B), then idg ® M €
§5(CA — CB).

e Topological closure: For systems A, B, §(A — B) is a topologically closed set.

Note that closure under composition and stability under tensor product imply that if M7 and Ms
are free channels, then so is M1 ® Mo.

Since quantum causal networks consist of quantum channels with a causal ordering, one way to
construct a resource theory of quantum causal networks is to take a particular resource theory for
quantum channels and consider a causal network to be free if its all of its constituent channels are
free.

Definition 10 (Set of free quantum combs). For r > 1, given any collection Aq,..., A, and
By, ..., B, of quantum systems, we define §,(A — B) to be the set of quantum r-combs with input
systems A1, ..., A, and output systems By, ..., B, obtained by composing channels from given free
sets in the manner depicted in Fig. 1. Specifically, an r-comb EI = (&1, ... ,E") € Fr if and only if
E' € F(Ay — E\By), £ € F(ALEL_1 — ByEy) for all2 <k <r—1, and & € (A E,_1 — B,),
where Fy, ..., E._1 are memory systems. For brevity, we simply write §, when the input and output
systems are understood from context or are unimportant.

Note that, due to the causal constraints on quantum combs, §,(A — B) is a subset of all free

channels from A} — B7, i.e.,
$:(4 - B) C §(A7 - BY). (159)

Free-channel sets commonly used in the analysis of quantum communication protocols are the
sets of LOCC and PPT channels between the sending and receiving ends of a given quantum channel.
In quantum thermodynamics, one considers the so-called “Gibbs preserving” channels; see, e.g., [21]
for a review.

We now define the following resource measures analogously to the measures defined in [22, 24|
for quantum channels.

Definition 11 (Divergence-based resource measures). Let D be a generalized divergence for quan-
tum states. Then, for an r-comb EN with input systems AT and output systems By, we define two
resource Measures:

D3 (el = i D, (EWHMM) (160)
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. (5["']7'D[7;]0_S ) (M[T]’/D[vjo—s )
= inf sup D (pDTBT (co-st) HpDrBr (comst)) (161)
M[T] Egr D[”]
(co-st)

where the optimization is with respect to all co-strategies D[(ﬂ
Cco-

st) with input systems B’{fl and output
systems A1 D,. We also define

. g[r] 7D['f] M[r] ,D[T]
Df(g[?‘]) — %I]lf sup D <p(DTBT (cofst)) Hp(DTBT (cost))) (162)
MIES D[(T;]o—st) S
_ [r] [r]
=t s D(eMonfl lMMoD Y. (163
Mlrleg, D[(r] » €3,

where the second line is due to (31).

Intuitively, the measures defined above quantify the resourcefulness of a quantum causal network
by calculating its distance to the set of free networks. The larger the value of the quantity, the more
resourceful the network is.

We note that for » = 1, the resource measures defined above reduce to the ones defined in
[22]| for quantum channels (which are 1-combs). This fact leads to another way of quantifying the
resourcefulness of a quantum causal network, which is by considering its corresponding multipartite
quantum channel as defined in (5). Then, for an r-comb & "l with input systems A7 and output
systems BJ, we can consider the quantity

DSWE Y = int Dl(/\/‘fm
LEF(AT—BY)

ﬁ) , (164)

where now the optimization is with respect to all free channels £ : Lin(A}) — Lin(B7). Now, as a
result of (71), we have that

DMy = mf D, (5“1 HMH) (165)
MU €F, (A—B)

> inf D (Ng[” NMM) (166)
M €F (A—B)
>  if D, (NS[” z) (167)
LeF(AT—BT)
[r]
= D{(NET), (168)

where the last inequality holds due to (159), i.e., because for all free r-combs MU A M s an
element of the set of free channels from Aj to Bj. This tells us something that is intuitively clear:
we can in general get more out of a quantum causal network by making use of its causal structure
(and therefore using adaptive inputs) than by simply using it as an ordinary quantum channel.

The quantities defined in Definition 11 satisfy two properties that are necessary in order for
them to be considered resource measures.

Theorem 11. For all v > 1, the measures D§ and Ef satisfy the following properties:
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e Data processing (monotonicity): If T?") € Fo, is a free (2r)-comb of the type shown in Fig. 7,
then for all r-combs EI,

DY(TP o gl) < D§ (), (169)
DY (T 6 gy < D (£l (170)

Similarly, if FIrtl € §,41 is a free (r 4+ 1)-comb of the type shown in Fig. 8, then for all
r-combs E

DF_,(FI* o €l) < DE(eM), (171)
D! (Fr+l o glly < DY(el). (172)

o Fuaithfulness: If the generalized divergence D (for states) is faithful, meaning that D(pl|lo) = 0
for all states p, o if and only if p = o, then

DM =0 —= eMeg, (173)
DiEy=0 = elleg,. (174)
Proof. To see (169), note that because 712" is free, and the optimization in D3 (71" o £I') is with

respect to free r-combs, we have that {7'[27"] o Ml ml ¢ Sr} C §r. Restricting the optimization
to this set, and using the data-processing inequality in Theorem 5, gives us

Dg(T[QT] o E[T]) — inf Dr (7‘[27“] o 8[7’} HM[T]> (175)
MlrleF,

< inf D, (TW o £1|| 712 Mw) (176)
Mlrleg,

< inf D, (gmH Mw) (177)
Mlleg,

= DY (), (178)

as required. The same reasoning, except using the data-processing inequality in Theorem 7, leads
to a proof of (171).

To see (170), we again restrict optimization to the set {72 o Ml : M1 € F,} and use
Theorem 5 to obtain

DY (T o gh)

= it sw D(T®ogllonl [MroDl ) (179)
M[T egr ’D[T] 63
(co-st) =T
< inf  sup (TW o&Monl] [T o MiToD] ) (180)
Meg’r DEZO st) ESr

< inf D (¢l Mol
= /\}trégr D[Tsup ( oD (co-st) H (co- st))

(co-s

(181)
t) 8’7‘
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= D) (eM), (182)

as required. The same reasoning, except using using the data-processing inequality in Theorem 7,
leads to a proof of (172).

For faithfulness, we first note that the property D(p|lo) = 0 if and only if p = ¢ implies that
D(p|lo) > 0 for all p and o. This implies that, if £l € F,, then DS (E) = 0 simply because the

optimal MU'l € §, in (160) can be taken to be £ itself. The same reasoning can be applied to INDE
to conclude (174). Finally, if DS(£l) = 0, then

T [r] — T [r]
oD, = MToDl (183)
for all choices of DP;]O_St) and MU'l € §,. In particular, for any choice of Ml € ., the equality
above holds for all DEZ]O_St), which implies that £ = M ie., €M € §,. O

A quantity that is used very commonly in resource theories is the so-called robustness, which can
be written in terms of the max-relative entropy [56], which is defined for two positive semi-definite
operators X and Y as

Diax (X ]|Y) :=logy inf{\ : X <AY'}. (184)

The logarithm of the robustness, called log-robustness, is then defined for r-combs using the max-
relative entropy for r-combs via the construction in Definition 2 and Definition 11:

LRI(EV) = D, (€1) (185)
_ ] || pql]
B Duas, (eM]mtT) (186)

which is a direct generalization of the definition of log-robustness for quantum channels (see, e.g.,
[24]). In particular, for » = 1, the definition above coincides with the definition in [24].

Since the max-relative entropy is isometrically invariant, we can use Proposition 5 to conclude
a very simple expression for the r-comb max-relative entropy Dmax,r. (See also [39, Proposition 7]
for a proof of this fact using a different method.)

Corollary 12 (Max-relative entropy between quantum combs). For any two r-combs € " and MU,

D (£ MIT) = Do (1(EV) [y (M) ) (187)

Proof. By Proposition 5, we have that
Dinasr (g[?"] HM[T‘]>
= sup Dyax (VPAE)WVP|[VPy(MI)V/P) (188)

(7]

(co-st)?

= sup inf {\: VPy(EVP < AWPyMIT)VP} (189)
D[r]
(co-st)’
P
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[r]

(co-st) and its associated positive semi-definite operator P, it holds that

Now, for any choice of D

VPy(EMVP < WPy MIMVP < y(£l) < My(ml), (190)

In other words, the optimal choice of A is independent of the co-strategy. The optimization over
co-strategies is therefore unnecessary, and we obtain

Dinar (€7 M) = it {9 (E1) < (M0} (191)
= D (1(ED) [y (M) (192)
as required. O

Corollary 12 tells us that the max-relative entropy between quantum combs is given simply
by the usual max-relative entropy in (184) between the Choi representations. Recalling the fact
that the Choi representation of any comb £} is simply the Choi representation of the corresponding
multipartite channel A€ (see (6)), we see that equality holds in (168) for the max-relative entropy,
ie.,

LRY(£l) = LR§(WE"), (193)

so that the log-robustness of a quantum causal network is equal to the log-robustness of its cor-
responding multipartite quantum channel. This fact has an important consequence: using the
log-robustness to quantify the resourcefulness of a quantum causal network does not take adaptive-
ness into account. Moreover, the error bounds in [27, 28] based on log-robustness do not lead to
new results when applied to quantum causal networks.

So far, we have considered resource measures that essentially quantify how far the given causal
network is from the set of free causal networks. Let us now consider measures that are based on
how well a given network can be transformed into another given network using free networks. In
Sec. 3.4, we considered two types of transformations of r-combs, as shown in Fig. 7 and Fig. 8. The
first type of transformation takes an r-comb and transforms it into another r-comb by applying a
(2r)-comb that performs a pre- and post-processing of the channels in the given r-comb. Let us
denote these “transformations of the first kind” by 7;[2T]. The second type of transformation takes
an r-comb and transforms it into an (r — 1)-comb by applying a (r + 1)-comb with the structure
shown in Fig. 8. We denote these “transformations of the second kind” by ]:I[;H]. Given an r-comb
El and a target r-comb MUl we can quantify the error in the transformation of £ into MU via
a transformation of the first kind by

[2r]
s <5[rl T, MW) = D, (5“1 oTI[Q”HM[Tl). (194)

For a target (r — 1)-comb A"~ the error in the transformation of £ into N1 via a transfor-
mation of the second kind is

[r+1]
dih (5[7"] 7, N["—ﬂ> = Dy (€10 AN (195)
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FIGURE 9: (a) Transformation of a strategy 3-comb & Bl into a quantum state for systems Ds

and B3 via combination with a co-strategy 3-comb Dg]o_st).

3-comb B! into a quantum channel from By to A4 via combination with a strategy 4-comb

(4]
D(st) :

(b) Transformation of a strategy

We can define analogous error quantities using the fidelity and root-fidelity of quantum combs, as
defined in Definition 6.

Now, in a resource theory, we are allowed only free transformations. In other words, the channels
in the combs 7}[%] and .7-'1[;“] must be free channels. Under this restriction, the optimal errors are

[r]
db (755 M) = it dy (0 Ml (196)
T2 eFar
— it D, (Mo 7MY (197)
7E[2r]€32r
[r+1]
il (sw %lw) —  inf L el TE pq (198)
]:I[;-H]G&TJH

= inf Doy (Mo AT M) (199)

]:I[}n-H] €Fr+1

Let us now consider transformation tasks that are based on taking a given resource "l and
transforming it to either a quantum state or a quantum channel using free combs.

4.1 Transformations to states

Consider transforming a given (resourceful) strategy r-comb & " with input systems A7 and output
[r]

(co-st)
with input systems B{_l and output systems A} D, as shown in Fig. 9(a). For this task, the figure

systems B] into a given (resourceful) quantum state op,p, via a free co-strategy r-comb D
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of merit (i.e., the transformation error) is

i Do\ (el )
dp (&M 7SV 0 ) =D (py, 4 HUDTBT . (200)

The optimal error is then

plrl
dp (5[7"1 Sy g) = f dp (5[7"1 (et a> (201)
D (co-st) €87
. (0Dl )
— i D(,)DTBT H ) (202)
D(co-st) €87

[r]
(co-st

and output systems A]D,. We typically use the trace distance as the divergence in (202) due to its
operational interpretation in the context of binary state discrimination, so that

dir <g[7‘} — a> = inf 1
'D[T] t)ESr 2

(co-s

where the optimization is with respect to free co-strategy r-combs D ) with input systems Bf

[r]
(5 D(co st) )

pDrBr — 0D, B, (203)

1

The error quantity in (202) can be thought of as a resource measure for the pair ([}, o) of resources.

4.2 Transformations to channels

We can consider all of the aforementioned questions in the channel scenario as well. Specifically,
consider transformation a given strategy r-comb E[") with input systems A7 and output systems B

into a given quantum channel Ng,_,4, ., via a free strategy (r + 1)-comb DE 4; U with input systems

By and output systems A7T! as shown in Fig. 9(b). For this task, the figure of merit (i.e., the
transformation error) is

dp <5V] 26y’ N) - D, (5[4 ODEZ:SHHN’) , (204)
The optimal error is then
o (M5 )=t ap (sw 7y’ /\/> 205)
DS eg
- (ol -

(St)

where the optimization is with respect to free strategy (r + 1)-combs DEZ:SH with input systems B

and output systems Ag“. We typically use the diamond distance as the divergence in (206) due to
its operational interpretation in terms of binary channel discrimination, so that

@ (M3 a) = g L Hg[’“lop[r“] N
7‘+1] (St)
Dist) E€Sr+

(207)

<
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This definition of the transformation error in terms of the diamond distance is analogous what has
been defined before [57] (see also [23]). As before, the error quantity in (206) can be thought of as
a resource measure for the pair (E['), V') of resources.

4.3 Distillation tasks

The task of distillation is about using multiple (parallel) instances of a given resource "l and using
them to obtain another resource. Let us consider distilling to states and channels. We define the
following quantities:

Ry (E[T] Sng a) = Su% {% :dp ((5[7"])” — U®m) < 5} , (208)
me

Ry (5[’"] Snrgs /\/) = sup {% :dp ((E[T])X" —>N®m> < 5}, (209)
me

which are the maximum rates at which copies of o and N, respectively, can be distilled from n uses
of the comb &I Note that
(Elrlyxm = (glr] gl glrly (210)

Ve
n times

is an (nr)-comb, which corresponds to the fact that we can use comb & "] itself adaptively as opposed
to simply in parallel, which would be described by the r-comb (& [7"])@". This is also why the free
operations for the case of states are (nr)-combs, because each use of the comb involves 7 rounds.
Similarly, for the transformation to a channel, the free operations are (nr + 1)-combs.

In the asymptotic setting, we are interested in the values

inf liminf R}y (E[T] Sny 0) , (211)

£€(0,1) n—0o0

inf liminf R75 <5W St N ) , (212)

e€(0,1) n—o0

which are the highest rates at which the comb £l can be distilled to a o or AV, respectively, with
asymptotically vanishing error.

5 Summary & outlook

In this note, we have looked at various ways of quantifying quantum causal networks. We considered
a family of measures based on generalized divergences for states that quantify how far apart two
quantum causal networks are. We also considered a notion of fidelity between quantum causal
networks and a notion of the norm of a causal network via the Schatten a-norms. The main idea
behind all of these definitions is to take a quantum causal network, apply a corresponding co-strategy
to it, and then evaluate the usual state measure on the state obtained at the end of the interaction.
We looked at data-processing inequalities for these quantities, and we looked at an application to
hypothesis testing and discrimination of quantum causal networks.
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Using the generalized divergence between quantum causal networks leads to definitions of re-
source measures for them. Because quantum causal networks can allow for adaptive inputs, we
show that these resource measures are in principle different from the usual quantum channel re-
source measures that been previously defined. However, for the log-robustness, we showed that the
resource measure for quantum causal networks coincides with the measure for ordinary quantum
channels. This means that prior results on resource interconversions for quantum channels, which
make use of the log-robustness, can be directly applied to quantum causal networks, leading to
estimates of their resourcefulness. It also means, however, that there is potential for improvement
in the analysis of the resourcefulness of quantum causal networks using different techniques, because
the log-robustness does not take adaptiveness into account. Specifically, for future work, it would
be interesting to investigate the resource interconversion problems defined in Sec. 4.1, 4.2, and 4.3.

Other directions for future work include: extending the generalized divergence and fidelity mea-
sures considered here to continuous-variable systems, in manner similar to recent work [58]. It is also
worthwhile to prove continuity results for the information quantities considered here, in a manner
similar to [22|, and to prove analogues of Stein’s lemma for (asymmetric) hypothesis testing in the
asymptotic setting.
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