Practical figures of merit and thresholds for entanglement distribution in quantum networks

Sumeet Khatri, Corey Matyas, Aliza Siddiqui, Jonathan Dowling

Department of Physics & Astronomy, Louisiana State University

Phys. Rev. Research 1 (2), 023032

SQuInT 2020

February 9, 2020

Vision: The Quantum Internet

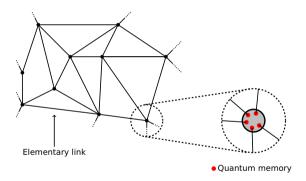
A global interconnected network of quantum networks in which all parties can perform quantum information processing and quantum computing tasks.

Examples

- ▶ Quantum teleportation
- ► Quantum key distribution
- Distributed quantum computing
- ► Quantum clock synchronization
- ▶ and many others...

Quantum communication networks

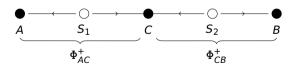
- ► Nodes are sending/receiving stations.
- ▶ Nodes contain at least d(v) quantum memories with coherence time t^* .
- ► Elementary links represent:
 - ► Entanglement ⇒ undirected graph;
 - ► Quantum channels ⇒ directed graph.
- ► Link creation is probabilistic.
- ► The graph is *dynamic*: links disappear and reappear over time.



Quantum repeaters

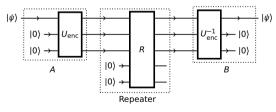
Entanglement-based

- Generate entanglement between desired nodes, then teleport.
- ► Repeaters perform entanglement swapping and purification.
- ► Requires two-way communication for heralding.

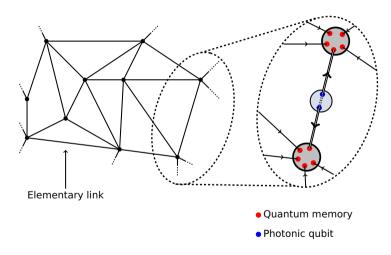


Quantum error correction-based

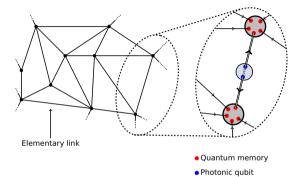
- Send information directly in encoded form.
- Repeaters apply recovery operations.
- One-way communication, but need fault-tolerant gate operations.



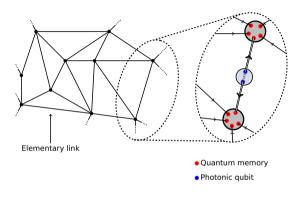
Entanglement distribution network



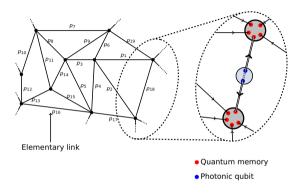
★ <u>Our focus</u>: establishing elementary entanglement links.



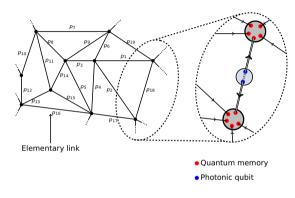
- 1. Probabilistic sources;
- 2. Photon transmission through fiber or free space: $\eta = e^{-\alpha l}$;
- Quantum memory read/write inefficiency;
- 4. Photon detector inefficiency;
- 5. Probabilistic entanglement purification.



- 1. Probabilistic sources;
- 2. Photon transmission through fiber or free space: $\eta = e^{-\alpha l}$;
- Quantum memory read/write inefficiency;
- 4. Photon detector inefficiency;
- 5. Probabilistic entanglement purification.
- **★** Every elementary link has success probability p_i , $1 \le i \le M$, composed of all loss elements.
- ★ Every quantum memory has cutoff time $t^* \Rightarrow$ cutoff number of trials $n^* = \lfloor Rt^* \rfloor$.

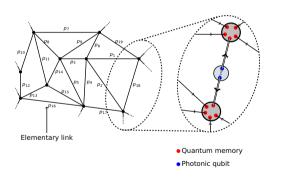


- 1. Probabilistic sources;
- 2. Photon transmission through fiber or free space: $\eta = e^{-\alpha l}$;
- Quantum memory read/write inefficiency;
- 4. Photon detector inefficiency;
- 5. Probabilistic entanglement purification.
- **★** Every elementary link has success probability p_i , $1 \le i \le M$, composed of all loss elements.
- ★ Every quantum memory has cutoff time $t^* \Rightarrow$ cutoff number of trials $n^* = \lfloor Rt^* \rfloor$.



- 1. Probabilistic sources;
- 2. Photon transmission through fiber or free space: $\eta = e^{-\alpha \ell}$;
- 3. Quantum memory read/write inefficiency;
- 4. Photon detector inefficiency;
- 5. Probabilistic entanglement purification.
- ★ Every elementary link has success probability p_i , $1 \le i \le M$, composed of all loss elements.
- ★ Every quantum memory has cutoff time $t^* \Rightarrow$ cutoff number of trials $n^* = \lfloor Rt^* \rfloor$.
- ★ What values of p_i and n^* are acceptable for a "good" network?

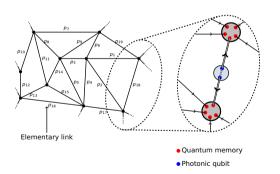
Consider a network based on graph G with memory cutoff n^* .



- 1. How long does it take to establish some number of elementary links in the network?
 - $N(M, n^*)$: number of time steps needed to establish M elementary links in the network.

The time is given by $T(M, n^*) = N(M, n^*)/R$, where R is the repetition rate (trials per second).

Consider a network based on graph G with memory cutoff n^* .



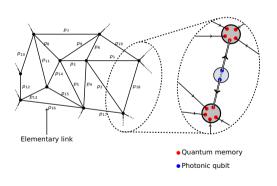
2. How many elementary links have been established after a given amount of time?

 $L_n(G, n^*)$: number of established elementary links after n time steps.

Can be used to get the *average degree* of the network after *n* time steps:

$$\mathbb{E}[D_n(G)] = \frac{2\mathbb{E}[L_n(G, n^*)]}{|G|}.$$

Consider a network based on graph G with memory cutoff n^* .



3. How big is the largest connected cluster after a given amount of time?

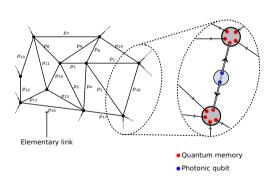
 $S_n^{\max}(G, n^*)$: size of the largest cluster after n time steps.

Other graph-theoretic parameters:

- ► Average clustering coefficient.
- Average distance between two randomly chosen nodes.

(See Barabási, Network Science.)

Consider a network based on graph G with memory cutoff n^* .



 $\mathbb{E}[N(M, n^*)]$: average number of time

steps to create *M* elementary links.

 $\mathbb{E}[L_n(G, n^*)]$: average number of

elementary links after n

time steps.

 $\mathbb{E}[S_n^{\max}(G, n^*)]$:

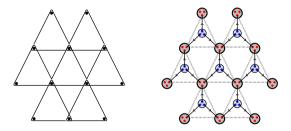
average size of the largest connected cluster after *n*

connected cluster after *i*

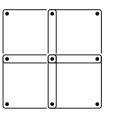
time steps.

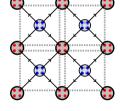
Multipartite elementary links

- ★ Elementary links can involve multipartite entanglement as well. (Or broadcast channels.)
- ★ The network then corresponds to a hypergraph.



Each elementary link is a four-partite state.

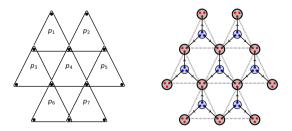




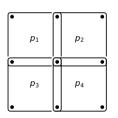
Each elementary link is a four-partite state.

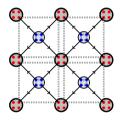
Multipartite elementary links

- ★ Elementary links can involve multipartite entanglement as well. (Or broadcast channels.)
- ★ The network then corresponds to a hypergraph.



Each elementary link is a four-partite state.



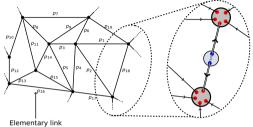


Each elementary link is a four-partite state.

Average link creation time

 N_i : number of time steps needed to establish ith elementary link

$$\Pr[N_i = n] = p_i(1 - p_i)^{n-1} \Rightarrow \mathbb{E}[N_i] = \frac{1}{p_i}$$



- Quantum memory
- Photonic qubit

- ★ For simplicity, assume $p_i = p$ for all elementary links $\Rightarrow N(M, n^*)$ does not depend on the structure of the graph.
- ▶ With $n^* = 0$ (no quantum memories),

$$\Pr[N(M, 0) = n] = p^{M} (1 - p^{M})^{n-1} \Rightarrow \mathbb{E}[N(M, 0)] = \frac{1}{p^{M}}$$

Average link creation time

▶ With $n^* = \infty$, $N(M, \infty) = \max\{N_1, N_2, ..., N_M\}$.

$$\mathbb{E}[N(M,\infty)] = \sum_{k=1}^{M} {M \choose k} \frac{(-1)^{k+1}}{1 - (1-p)^k}.$$

See also [PRA 83, 012323 (2011)].

► Closed-form expression for $\mathbb{E}[N(M, n^*)]$ for arbitrary n^* :

$$\mathbb{E}[N(M, n^*)] = \frac{1 - (1 - q^{n^*})^M + (1 - q^M) \left[n^* - \sum_{k=1}^{n^*-1} (1 - q^k)^M \right]}{(1 - q^{n^*+1})^M - q^M (1 - q^{n^*})^M},$$

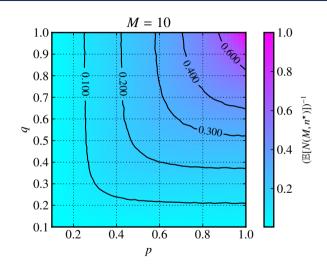
where q = 1 - p. See [PRA 100, 032322 (2019)], [arXiv:1309.3407].

★ Note that $\mathbb{E}[N(M, \infty)] \leq \mathbb{E}[N(M, n^*)] \leq \mathbb{E}[N(M, 0)]$.

Average link creation time

	1.1				
	M				
p	10	20			
	n*	n*			
0.01	655	745			
0.03	210	250			
0.05	125	150			
0.1	65	70			
0.3	18	20			
0.5	9	10			

Minimum cutoff n^* needed to get within 1% of the optimal number $\mathbb{E}[N(M,\infty)]$ of trials.



Network with two different edge probabilities.

 $L_n(G, n^*)$: number of established elementary links after n time steps.

 $L^{(j)}(G, n^*)$: number of established elementary links in the *j*th time step.

 $(L^{(j)}(G, n^*))_{i=1}^{\infty}$ is a Markov chain with memory.

$$L_n(G, n^*) = \left\{ egin{array}{ll} \sum_{j=1}^n L^{(j)}(G, n^*), & n \leq n^* + 1, \ \sum_{j=n-n^*}^n L^{(j)}(G, n^*), & n > n^* + 1. \end{array}
ight.$$

- ★ For simplicity, assume $p_i = p$ for all $1 \le i \le M$. ($M \equiv$ number of edges in G.)
- For $n^* = 0$: $L_n(M, 0)$ is a binomial RV

$$\Rightarrow \Pr[L_n(G,0)=x] = \binom{M}{x} p^x (1-p)^{M-x} \Rightarrow \mathbb{E}[L_n(G,0)] = Mp.$$

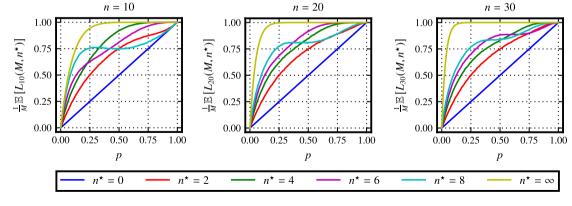
► For $n^* = \infty$: if x_1 links established in 1st trial, then $M - x_1$ links available for next trial, etc.

$$\Rightarrow \mathbb{E}[L_n(G,\infty)] = M(1-(1-p)^n).$$

More generally,

$$\mathbb{E}[L_n(G,n^\star)] = M(1-(1-p)^n), \quad n^\star \geq n-1.$$

$$p \le \frac{1}{M} \mathbb{E}[L_n(G, n^*)] \le 1 - (1 - p)^n,$$



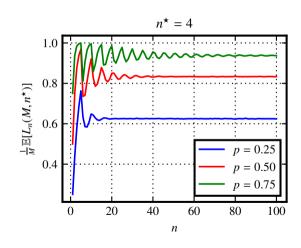
Look at the long-term (steady-state) behavior for fixed n^* and $p: \lim_{n\to\infty} \frac{1}{M} \mathbb{E}[L_n(G, n^*)]$.

$$\underline{\text{For } n^* = 1} \colon \lim_{n \to \infty} \frac{1}{M} \mathbb{E}[L_n(G, 1)] = \frac{2p}{1 + p}.$$

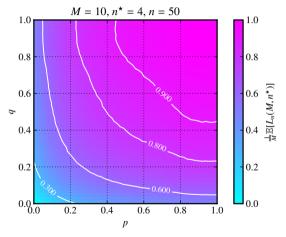
For
$$n^* = \infty$$
: $\lim_{n \to \infty} \frac{1}{M} \mathbb{E}[L_n(G, \infty)] = 1$.

 \star Use this to determine required p for a desired fraction f of elementary links in the long-term. For example,

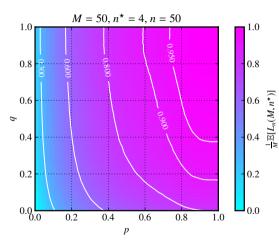
$$n^* = 1 \implies p \ge \frac{f}{2-f}$$
.



★ Links with two different probabilities.



Even split between p and q.

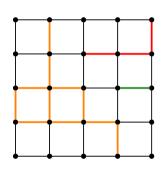


Uneven split between p and q.

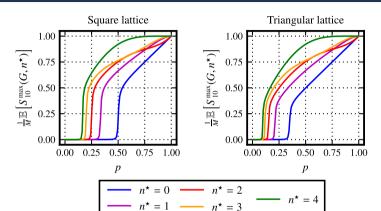
 $S_n^{\max}(G, n^*)$: size of the largest cluster after n trials.

$$S_n^{\max}(G, n^*) \le L_n(G, n^*)$$

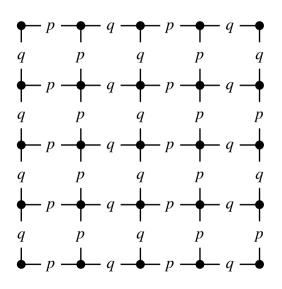
$$\frac{1}{M}\mathbb{E}\Big[S_n^{\max}(G, n^{\star})\Big] \leq 1 - (1 - \rho)^n.$$

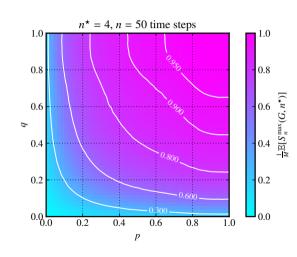


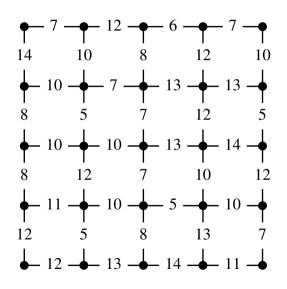
- ► $n^* = 0 \Rightarrow$ bond percolation.
- ► The critical probability quantifies the robustness of the network to loss and other probabilistic aspects. (see also [PRA 97, 012335 (2018)]).

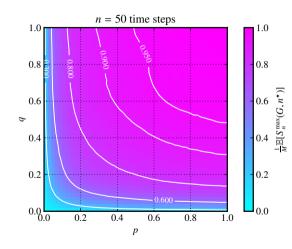


n*	0	1	2	3	4
Square	0.500	0.336	0.250	0.203	0.166
Triangular	0.347	0.213	0.151	0.117	0.098









Summary & outlook

We considered practical figures of merit for quantum networks:

- 1. Average link creation time;
- 2. Average number of links;
- 3. Average largest cluster size.

Practical aspects:

- ► Probabilistic link creation.
- ► Finite coherence time quantum memories.

Future directions: add fidelity constraints to the figures of merit as a function of n^* . See, e.g., [PRA 97, 062333 (2018)].

Paper available at arXiv:1905.06881.