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Abstract

We define and state some basic properties of n-qubit Pauli channels.
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1 Introduction

In this note, we consider n-qubit Pauli channels, which are quantum channels that randomly apply
an n-qubit Pauli operator to the input state. We start by defining the n-qubit Pauli operators
and the corresponding n-qubit Pauli channels. Then, we look at specific examples of n-qubit Pauli
channels, such as the depolarizing channel, the dephasing channel, and the bit-flip channel.

2 n-qubit of Pauli operators

The single-qubit Pauli operators are defined as

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
= −iσxσz. (1)
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For n qubits, we let

X
~j := σj1x ⊗ σj2x ⊗ · · · ⊗ σjnx , (2)

be the n-qubit Pauli-X operator, where ~j = (j1, j2, . . . , jn), j1, j2, . . . , jn ∈ {0, 1}. Similarly, we let

Z
~k := σk1z ⊗ σk2z ⊗ · · · ⊗ σknz , (3)

be the n-qubit Pauli-Z operator, where k1, k2, . . . , kn ∈ {0, 1}. The action of the n-qubit Pauli-X
and Pauli-Z operators on standard basis vectors is as follows:

X
~j |~̀〉 = |~j ⊕~l〉, Z

~k|~̀〉 = (−1)
~k·~̀|~̀〉. (4)

We note the following properties of the n-qubit Pauli operators that are easy to verify:

X
~j1X

~j2 = X
~j1⊕~j2 , Z

~k1Z
~k2 = Z

~k1⊕~k2 , X
~jZ

~k = (−1)
~j·~kZ

~kX
~j , Tr[X

~jZ
~k] = 2nδ~j,~0, δ~k,~0. (5)

From the last property, and the fact that σx and σz are linearly independent, it follows that the

set {X~jZ
~k : ~j,~k ∈ {0, 1}n} is an orthogonal basis for the space of all linear operators acting on the

space of n qubits.

Using the properties stated above, we can prove the following identity.

Lemma 1. For any operator ρ,

1

22n

∑
~j,~k

X
~jZ

~kρ(X
~jZ

~k)† = Tr[ρ]
1

2n
, (6)

Proof. Indeed, we can expand ρ as

ρ =
1

2n

∑
~j,~k

x~j,~kX
~jZ

~k, x~j,~k =
〈
X
~jZ

~k, ρ
〉

= Tr[(X
~jZ

~k)†ρ]. (7)

Note that Tr[ρ] = x~0,~0. Then, we have

1

22n

∑
~j,~k

X
~jZ

~kρ(X
~jZ

~k)† =
1

23n

∑
~j,~k
~j′,~k′

x~j′,~k′X
~jZ

~k(X
~j′Z

~k′)(X
~jZ

~k)† (8)

=
1

23n
1

23n

∑
~j,~k
~j′,~k′

x~j′,~k′(−1)
~k·~j′(−1)

~k′·~jX
~j′Z

~k′ . (9)

Now, it holds that ∑
~j

(−1)
~k′·~j = 2nδ~k′,~0,

∑
~k

(−1)
~k·~j′ = 2nδ~j′,~0. (10)

Therefore,
1

22n

∑
~j,~k

X
~jZ

~kρ(X
~jZ

~k)† =
1

2n
x~0,~01 = Tr[ρ]

1

2n
, (11)

as required.

2



Using Eq. (6), we can prove the following.

Lemma 2. The projector |Φ+〉〈Φ+| onto the n-qubit maximally entangled state

|Φ+〉 =
1√
2n

∑
~j∈{0,1}n

|~j,~j〉 (12)

can be written as

|Φ+〉〈Φ+| = 1

22n

∑
~j,~k

X
~jZ

~k ⊗X~jZ
~k =

1

22n

∑
~j,~k

Z
~kX

~j ⊗ Z~kX~j . (13)

Proof. To prove this, we make use of the operator vec, which is defined as

vec(X) = (X ⊗ 1)|Γ〉, |Γ〉 =
∑

~j∈{0,1}n
|~j,~j〉. (14)

The vec operator takes any linear operator X and “vectorizes” it, meaning that

X =
∑
i,j

Xi,j |i〉〈j| 7−→
∑
i,j

Xi,j |i, j〉. (15)

From this, we see that
|Γ〉 = vec(1) (16)

We also have the following property:

vec(AXBT) = (AXBT ⊗ 1)|Γ〉 (17)

= (AX ⊗B)|Γ〉 (18)

= (A⊗B)(X ⊗ 1)|Γ〉 (19)

= (A⊗B)vec(X) (20)

⇒ vec(AXBT) = (A⊗B)vec(X), (21)

and we have that
Tr[X] = 〈Γ|(X ⊗ 1)|Γ〉 = 〈Γ|vec(X). (22)

Now, taking vec(·) on both sides of Eq. (6), we obtain

1

22n

∑
~j,~k

vec
(
X
~jZ

~kρ(X
~jZ

~k)†
)

=
|Γ〉〈Γ|vec(ρ)

2n
= |Φ+〉〈Φ+|vec(ρ) (23)

⇒ 1

22n

∑
~j,~k

(X
~jZ

~k ⊗X~jZ~k)vec(ρ) = |Φ+〉〈Φ+|vec(ρ) (24)

⇒ 1

22n

∑
~j,~k

(X
~jZ

~k ⊗X~jZ
~k)vec(ρ) = |Φ+〉〈Φ+|vec(ρ) (25)

Since the operator ρ is arbitrary, we obtain the desired result.
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3 n-qubit Pauli channels

An n-qubit Pauli channel corresponds to the action of random n-qubit Pauli operators on a quantum
state ρ according to some probability distribution. Let P(n) denote an n-qubit Pauli channel. Then
the action of P(n) on the state ρ is given by

P(n)
~p (ρ) =

∑
~j,~k

p~l,~kX
~jZ

~kρ(X
~jZ

~k)†, (26)

where 0 ≤ p~j,~k ≤ 1, and
∑
~j,~k
p~l,~k = 1. Using the properties in Eq. (5), we find that

P(n)
~p (X~aZ

~b) =
∑
~j,~k

p~j,~kX
~jZ

~kX~aZ
~bZ

~kX
~j (27)

=
∑
~j,~k

(−1)~a·
~k(−1)

~b·~jp~j,~kX
~aZ

~b (28)

= c
~a,~b
X~aZ

~b, (29)

where
c
~a,~b

:=
∑
~j,~k

(−1)~a·
~k(−1)

~b·~jp~j,~k. (30)

We have that −1 ≤ c
~a,~b
≤ 1 for all ~a,~b ∈ {0, 1}n.

Observe that Pauli channels are diagonal in the Pauli basis, in the sense that if we define the

matrix P
(n)
~p as

(P
(n)
~p ) ~j,~k

~j′,~k′

=
1

2n
Tr[(X

~jZ
~k)†P(n)

~p (X
~j′Z

~k′)], (31)

then by using the properties in (5) we get

(P
(n)
~p ) ~j,~k

~j′,~k′

= c~j,~kδ~j,~j′δ~k,~k′ . (32)

4 Depolarizing channel

Given the general form of an n-qubit Pauli channel, namely

P(n)
~p (·) =

∑
~j,~k

p~j,~kX
~jZ

~k(·)(X~jZ
~k)†, (33)

the depolarizing channel is defined by taking

p~j,~k =

{
1− p if ~j = ~k = ~0,
p

22n−1 otherwise,
(34)
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for some p ∈ [0, 1]. We thus have the following definition of the n-qubit depolarizing channel Dn:

D(n)
p (ρ) = (1− p)ρ+

p

22n − 1

∑
(~j,~k)6=(~0,~0)

X
~jZ

~kρ(X
~jZ

~k)†. (35)

In order to determine the coefficients c
~a,~b

of this channel, let us first write the action of the n-qubit

depolarizing in a simpler form by making use of the identity in Eq. (6). We get

D(n)
p (ρ) =

(
1− 22n

22n − 1
p

)
ρ+

22n

22n − 1
pTr[ρ]

1

2n
(36)

for all operators ρ. Now, since the operators X~aZ
~b are traceless for all (~a,~b) 6= (~0,~0), we have

D(n)
p (X~aZ

~b) =

(
1− 22n

22n − 1
p

)
X~aZ

~b ∀ (~a,~b) 6= (~0,~0)⇒ c
~a,~b

= 1− 22n

22n − 1
p, (37)

D(n)
p (1) = 1⇒ c~0,~0 = 1. (38)

Therefore, c
~a,~b
≥ 0 if and only if p ≤ 22n−1

22n
.

5 Dephasing channels

The dephasing channel on n qubits is defined as follows:

Z(n)
~q (ρ) =

∑
~k

q~kZ
~kρZ

~k. (39)

Then,

Z(n)
~q (X~aZ

~b) =
∑
~k

q~kZ
~k(X~aZ

~b)Z
~k (40)

=
∑
~k

q~k(−1)~a·
~kX~aZ

~b, (41)

so that
c
~a,~b

=
∑
~k

q~k(−1)~a·
~k. (42)

Now, a special case of the n-qubit dephasing channels is the one in which

q~k =


1− p if ~k = ~0,

p if ~k = ~1,
0 otherwise,

(43)

for some p ∈ [0, 1]. In this case,

Z̃(n)
p (ρ) = (1− p)ρ+ p(Z ⊗ · · · ⊗ Z)ρ(Z ⊗ · · · ⊗ Z). (44)
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Then, we have

c
~a,~b

= q~0 + (−1)~a·
~1q~1 = 1− p+ (−1)|~a|p =

{
1 if |~a| even,
1− 2p if |~a| odd,

(45)

where |~a| denotes the Hamming weight (number of ones) in the bit string ~a. Therefore, in this case,
we have c

~a,~b
≥ 0 if and only if p ≤ 1

2 .

Another special case is the one in which q~k = 1
2n for all ~k, so that

Z(n)
(ρ) :=

1

2n

∑
~k

Z
~kρZ

~k. (46)

For any input operator ρ, this channel returns a diagonal state consisting of the diagonal elements
of ρ in the standard basis. Indeed, let ρ be written in the standard basis as

ρ =
∑
~k,~̀

x~k,~̀|~k〉〈~̀|. (47)

Then,

Z(n)
(ρ) =

1

2n

∑
~j

Z
~jρZ

~j (48)

=
1

2n

∑
~j,~k,~̀

x~k,~̀Z
~j |~k〉〈`|Z~j (49)

=
1

2n

∑
~j,~k,~̀

x~k,~̀(−1)
~j·(~k⊕~̀)|~k〉〈~̀| (50)

=
1

2n

∑
~k,~̀

x~k,~̀x~k,~̀

∑
~j

(−1)
~j·(~k⊕~̀)


︸ ︷︷ ︸

2nδ~k,~̀

|~k〉〈~̀| (51)

=
∑
~k,~̀

x~k,~k|~k〉〈~k|. (52)

In this special case, we have that

c
~a,~b

=
1

2n

∑
~k

(−1)~a·
~k = δ~a,~0 (53)

for all ~a,~b.

The dephasing channel in Eq. (46) can be generalized as follows:

Z(n)
p (ρ) = (1− p)ρ+

p

2n − 1

∑
~k 6=~0

Z
~kρZ

~k, (54)
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where p ∈ [0, 1]. Then, Z(n)
= Z(n)

1− 1
2n

. In this case, we have

c
~a,~b

= 1− 2n

2n − 1
p+

p

2n − 1
δ~a,~0 (55)

for all ~a,~b. This is non-negative if and only if p ≤ 2n−1
2n .

6 Bit-flip channels

The bit-flip channel on n qubits is defined analogously to the n-qubit dephasing channel above:

X (n)
~r (ρ) =

∑
~k

r~kX
~kρX

~k. (56)

Then, by the same arguments as for the dephasing channel, we get

c
~a,~b

=
∑
~k

r~k(−1)
~b·~k. (57)

As with the dephasing channel, we define

X̃ (n)
p (ρ) = (1− p)ρ+ p(X ⊗ · · · ⊗X)ρ(X ⊗ · · · ⊗X), (58)

so that

c
~a,~b

=

{
1 if |~b| even,

1− 2p if |~b| odd.
(59)

We can also define the channel

X (n)
=

1

2n

∑
~j

X
~jρX

~j , (60)

which has the following effect on any operator ρ =
∑

~k,~̀
x~k,~̀|~k〉〈~̀|:

X (n)
=

1

2n

∑
~j

X
~jρX

~j (61)

=
1

2n

∑
~j,~k,~̀

x~k,~̀|~k ⊕~j〉〈~̀⊕~j| (62)

=
∑
~k′,~̀′

 1

2n

∑
~j

x~k′⊕~j,~̀′⊕~j

 |~k′〉〈~̀′|. (63)

In this special case, we have
c
~a,~b

= δ~b,~0. (64)
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Finally, we can define the channel

X (n)
p (ρ) = (1− p)ρ+

p

2n − 1

∑
~k 6=~0

X
~kρX

~k, (65)

where p ∈ [0, 1]. Then, X (n)
= X (n)

1− 1
2n

. In this case, we have

c
~a,~b

= 1− 2n

2n − 1
p+

p

2n − 1
δ~b,~0. (66)
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