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Abstract

We define and state some basic properties of n-qubit Pauli channels.
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1 Introduction

In this note, we consider n-qubit Pauli channels, which are quantum channels that randomly apply
an n-qubit Pauli operator to the input state. We start by defining the n-qubit Pauli operators
and the corresponding n-qubit Pauli channels. Then, we look at specific examples of n-qubit Pauli
channels, such as the depolarizing channel, the dephasing channel, and the bit-flip channel.

2 n-qubit of Pauli operators

The single-qubit Pauli operators are defined as
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For n qubits, we let
X =0l @of®---@al, (2)
be the n-qubit Pauli-X operator, where j = (1,725 -+ n), J1,J25 - - -5 Jn € {0,1}. Similarly, we let
ZF=obrwolre. gt 3)

be the n-qubit Pauli-Z operator, where ki, ko, ..., k, € {0,1}. The action of the n-qubit Pauli-X
and Pauli-Z operators on standard basis vectors is as follows:
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X = jall, Z8 = (-1)F8. (4)

We note the following properties of the n-qubit Pauli operators that are easy to verify:
XT X = xhei  ghigk — ghek o xTzk _ (C1)JRZEXT Te(XTZF) = 27655 (5)
) b ) ]7 b s .
From the last property, and the fact that o, and o, are linearly independent, it follows that the

set {X izk 7,k € {0,1}"} is an orthogonal basis for the space of all linear operators acting on the
space of n qubits.

Using the properties stated above, we can prove the following identity.

Lemma 1. For any operator p,
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53 20 X ZEp(XTZR) = Mol o, (6)
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Proof. Indeed, we can expand p as
1 s e = e e ~
p= g Y apXI 2, wip= (X2, p) = (X725}, (7)
JE
Note that Tr[p] = 255. Then, we have
1 z o o 1 o 2 ’ 2
i > X ZFp(XI ZF)T = > D sy XIZNXT 28 ) (X 25 (8)
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Now, it holds that B
Y (=DFT =2, D> (—1)F =255 (10)
J k
Therefore,
1 2 E 1 1
o > XIZFp(XTZF)T = ool = Telpl oo (11)
Jk
as required. ]



Using Eq. (6), we can prove the following.

Lemma 2. The projector |®T)(®T| onto the n-qubit mazimally entangled state

o) = } S5
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can be written as
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Proof. To prove this, we make use of the operator vec, which is defined as

vee(X) = (X o)D), D)= > [7.7).
je{o,1}n

The vec operator takes any linear operator X and “vectorizes” it, meaning that
X = Zle|Z><]| — ZXi,j|iaj>-
2% 2%

From this, we see that

IT") = vec(1)
We also have the following property:
vec(AXB") = (AXB"® 1)|I")
= (AX ® B)|T)
=(A® B)(X®1)l)
= (A® B)vec(X)
= vec(AXB'") = (A® B)vec(X),

and we have that
Tr[X] = (X ® 1)|T) = (T'|vec(X).

Now, taking vec(-) on both sides of Eq. (6), we obtain

1 ik i) _ D (T vec(p) ot
2Tnzvec (XJZ (X7 ZF) ) = LR (o) (@ vee(p)
j?k
1 - —
= 5o 2 (X 2" @ XIZF)vec(p) = |87) (@ [vec(p)
7k
1 s o s g
= 5o 2 (X7 2F © XTZF)vec(p) = |87)(0 [vec(p)
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Since the operator p is arbitrary, we obtain the desired result.
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3 mn-qubit Pauli channels

An n-qubit Pauli channel corresponds to the action of random n-qubit Pauli operators on a quantum
state p according to some probability distribution. Let P denote an n-qubit Pauli channel. Then
the action of P(™ on the state p is given by

(n) Z p~~X’Zk (X9 ZF)t, (26)
where 0 < Pig <1, and Z» - = 1. Using the properties in Eq. (5), we find that
(") (@ by _ j 7k @ b ok 7
P(XZY) = ps p X2V X2 28X (27)
jk
=Y (1) (-1)Pp. pxZ (28)
;7E
— . ; X2, (29)
where - -
czpi= D (=11 "y (30)
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We have that —1 < c.

a5 < 1 for all d, be {0,1}m.

Observe that Pauli channels are diagonal in the Pauli basis, in the sense that if we define the
(n)
a

matrix Pﬁ S

n 1 2 7 n 2T
(B) i = 5 X291 P (x7 29, (31)
K

then by using the properties in (5) we get

(n) _
(F5) s = 7% 50k (32)
4 Depolarizing channel
Given the general form of an n-qubit Pauli channel, namely
Zp—» XT 7R ()(XT 2R (33)
the depolarizing channel is defined by taking
CJ1-p j=k=0,
Pik = { s7o— otherwise, (34



for some p € [0,1]. We thus have the following definition of the n-qubit depolarizing channel D,;:

Do) = (L—po+ o > X ZFp(XTZF). (35)

(7,F)#(0,0)

In order to determine the coefficients c 7 of this channel, let us first write the action of the n-qubit
depolarizing in a simpler form by making use of the identity in Eq. (6). We get

DI (p) = 1—i o Trp = (36)
p )= o 1P ) P gan 1P HHPgn
for all operators p. Now, since the operators X 37 are traceless for all (d, g) # (0,0), we have
(n) = ¥ 22n .- . oL 22n
Dpn (XCLZ ) = (1 - 22?1_1]?) XaZ W (CL, b) ;é (0,0) = Cig =1- Wp, (37)
DM(1) = 1= cg5=1. (38)
Therefore, = > 0 if and only if p < 2 22n .
5 Dephasing channels
The dephasing channel on n qubits is defined as follows:
20 = qzz pz". (39)
E
Then,
z(x77%) = Z ATS YAV (40)
= Z qp(—1)TFXIZP, (41)
E
so that .
Cab = ZQE(_l)ak (42)
k
Now, a special case of the n-qubit dephasing channels is the one in which
1—p ifk=0,
G=94 P if k=1, (43)
0 otherwise,
for some p € [0,1]. In this case,
ZM(p)=(1=pp+pZ@-@Z)p(Z&- ® Z). (44)



Then, we have

gt (=T =1 — a1 if |@| even,
i =dg+ (=) ar=1-p+ 2V {1—2p if || odd, (45)

where |d| denotes the Hamming weight (number of ones) in the bit string @. Therefore, in this case,
we have c.z > 0 if and only if p < %

Another special case is the one in which ¢ = 2% for all E, so that

ZM () Z ZFp 7k, (46)

For any input operator p, this channel returns a diagonal state consisting of the diagonal elements
of p in the standard basis. Indeed, let p be written in the standard basis as

p=3ap AR, (47)
kZ
Then,
2 () = =N 7ip7 48
250 = 5 Z p (48)
= o Z o ~Zj\l~c 0|z (49)
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In this special case, we have that
1 i
Cap = gu (1™ =95 (53)

for all a, b.

The dephasing channel in Eq. (46) can be generalized as follows:

ZM(p)=(1—pp+ pZ¥, (54)
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where p € [0,1]. Then, AR Zin)i. In this case, we have

an

2" P
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for all @, b. This is non-negative if and only if p < =5=.

6 Bit-flip channels

The bit-flip channel on n qubits is defined analogously to the n-qubit dephasing channel above:

XTE”) (p) = Z TEkaXk.
K

Then, by the same arguments as for the dephasing channel, we get

Cap = > (=D

—

k

As with the dephasing channel, we define

XM ) =1-pp+pX@ - @X)p(X @

so that .
)1 if |b| even,
] 1—2p if|b] odd.

We can also define the channel

which has the following effect on any operator p =} ;- »x; Z|E>( |:

—(n) 1 - -
X" = Q—nZXJpXJ
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In this special case, we have
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Finally, we can define the channel

XM ()= (1-p)p+ 5= > XFpxF,

o 14~
k#0
where p € [0,1]. Then, " —x 1(n) ', . In this case, we have

2n P

(65)
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