

Pauli Channels

Sumeet Khatri

March 3, 2020

Abstract

We define and state some basic properties of n -qubit Pauli channels.

Table of Contents

1	Introduction	1
2	n-qubit of Pauli operators	1
3	n-qubit Pauli channels	4
4	Depolarizing channel	4
5	Dephasing channels	5
6	Bit-flip channels	7

1 Introduction

In this note, we consider n -qubit Pauli channels, which are quantum channels that randomly apply an n -qubit Pauli operator to the input state. We start by defining the n -qubit Pauli operators and the corresponding n -qubit Pauli channels. Then, we look at specific examples of n -qubit Pauli channels, such as the depolarizing channel, the dephasing channel, and the bit-flip channel.

2 n -qubit of Pauli operators

The single-qubit Pauli operators are defined as

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = -i\sigma_x\sigma_z. \quad (1)$$

For n qubits, we let

$$X^{\vec{j}} := \sigma_x^{j_1} \otimes \sigma_x^{j_2} \otimes \cdots \otimes \sigma_x^{j_n}, \quad (2)$$

be the n -qubit Pauli- X operator, where $\vec{j} = (j_1, j_2, \dots, j_n)$, $j_1, j_2, \dots, j_n \in \{0, 1\}$. Similarly, we let

$$Z^{\vec{k}} := \sigma_z^{k_1} \otimes \sigma_z^{k_2} \otimes \cdots \otimes \sigma_z^{k_n}, \quad (3)$$

be the n -qubit Pauli- Z operator, where $k_1, k_2, \dots, k_n \in \{0, 1\}$. The action of the n -qubit Pauli- X and Pauli- Z operators on standard basis vectors is as follows:

$$X^{\vec{j}}|\vec{\ell}\rangle = |\vec{j} \oplus \vec{\ell}\rangle, \quad Z^{\vec{k}}|\vec{\ell}\rangle = (-1)^{\vec{k} \cdot \vec{\ell}}|\vec{\ell}\rangle. \quad (4)$$

We note the following properties of the n -qubit Pauli operators that are easy to verify:

$$X^{\vec{j}_1}X^{\vec{j}_2} = X^{\vec{j}_1 \oplus \vec{j}_2}, \quad Z^{\vec{k}_1}Z^{\vec{k}_2} = Z^{\vec{k}_1 \oplus \vec{k}_2}, \quad X^{\vec{j}}Z^{\vec{k}} = (-1)^{\vec{j} \cdot \vec{k}}Z^{\vec{k}}X^{\vec{j}}, \quad \text{Tr}[X^{\vec{j}}Z^{\vec{k}}] = 2^n \delta_{\vec{j}, \vec{0}}, \delta_{\vec{k}, \vec{0}}. \quad (5)$$

From the last property, and the fact that σ_x and σ_z are linearly independent, it follows that the set $\{X^{\vec{j}}Z^{\vec{k}} : \vec{j}, \vec{k} \in \{0, 1\}^n\}$ is an orthogonal basis for the space of all linear operators acting on the space of n qubits.

Using the properties stated above, we can prove the following identity.

Lemma 1. *For any operator ρ ,*

$$\frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} X^{\vec{j}}Z^{\vec{k}} \rho (X^{\vec{j}}Z^{\vec{k}})^\dagger = \text{Tr}[\rho] \frac{\mathbb{1}}{2^n}, \quad (6)$$

Proof. Indeed, we can expand ρ as

$$\rho = \frac{1}{2^n} \sum_{\vec{j}, \vec{k}} x_{\vec{j}, \vec{k}} X^{\vec{j}}Z^{\vec{k}}, \quad x_{\vec{j}, \vec{k}} = \langle X^{\vec{j}}Z^{\vec{k}}, \rho \rangle = \text{Tr}[(X^{\vec{j}}Z^{\vec{k}})^\dagger \rho]. \quad (7)$$

Note that $\text{Tr}[\rho] = x_{\vec{0}, \vec{0}}$. Then, we have

$$\frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} X^{\vec{j}}Z^{\vec{k}} \rho (X^{\vec{j}}Z^{\vec{k}})^\dagger = \frac{1}{2^{3n}} \sum_{\substack{\vec{j}, \vec{k} \\ \vec{j}', \vec{k}'}} x_{\vec{j}', \vec{k}'} X^{\vec{j}'}Z^{\vec{k}'} (X^{\vec{j}'}Z^{\vec{k}'}) (X^{\vec{j}}Z^{\vec{k}})^\dagger \quad (8)$$

$$= \frac{1}{2^{3n}} \frac{1}{2^{3n}} \sum_{\substack{\vec{j}, \vec{k} \\ \vec{j}', \vec{k}'}} x_{\vec{j}', \vec{k}'} (-1)^{\vec{k}' \cdot \vec{j}'} (-1)^{\vec{k}' \cdot \vec{j}} X^{\vec{j}'}Z^{\vec{k}'} \quad (9)$$

Now, it holds that

$$\sum_{\vec{j}} (-1)^{\vec{k}' \cdot \vec{j}} = 2^n \delta_{\vec{k}', \vec{0}}, \quad \sum_{\vec{k}} (-1)^{\vec{k} \cdot \vec{j}'} = 2^n \delta_{\vec{j}', \vec{0}}. \quad (10)$$

Therefore,

$$\frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} X^{\vec{j}}Z^{\vec{k}} \rho (X^{\vec{j}}Z^{\vec{k}})^\dagger = \frac{1}{2^n} x_{\vec{0}, \vec{0}} \mathbb{1} = \text{Tr}[\rho] \frac{\mathbb{1}}{2^n}, \quad (11)$$

as required. \square

Using Eq. (6), we can prove the following.

Lemma 2. *The projector $|\Phi^+\rangle\langle\Phi^+|$ onto the n -qubit maximally entangled state*

$$|\Phi^+\rangle = \frac{1}{\sqrt{2^n}} \sum_{\vec{j} \in \{0,1\}^n} |\vec{j}, \vec{j}\rangle \quad (12)$$

can be written as

$$|\Phi^+\rangle\langle\Phi^+| = \frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} X^{\vec{j}} Z^{\vec{k}} \otimes X^{\vec{j}} Z^{\vec{k}} = \frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} Z^{\vec{k}} X^{\vec{j}} \otimes Z^{\vec{k}} X^{\vec{j}}. \quad (13)$$

Proof. To prove this, we make use of the operator vec , which is defined as

$$\text{vec}(X) = (X \otimes \mathbb{1})|\Gamma\rangle, \quad |\Gamma\rangle = \sum_{\vec{j} \in \{0,1\}^n} |\vec{j}, \vec{j}\rangle. \quad (14)$$

The vec operator takes any linear operator X and “vectorizes” it, meaning that

$$X = \sum_{i,j} X_{i,j} |i\rangle\langle j| \mapsto \sum_{i,j} X_{i,j} |i, j\rangle. \quad (15)$$

From this, we see that

$$|\Gamma\rangle = \text{vec}(\mathbb{1}) \quad (16)$$

We also have the following property:

$$\text{vec}(AXB^T) = (AXB^T \otimes \mathbb{1})|\Gamma\rangle \quad (17)$$

$$= (AX \otimes B)|\Gamma\rangle \quad (18)$$

$$= (A \otimes B)(X \otimes \mathbb{1})|\Gamma\rangle \quad (19)$$

$$= (A \otimes B)\text{vec}(X) \quad (20)$$

$$\Rightarrow \text{vec}(AXB^T) = (A \otimes B)\text{vec}(X), \quad (21)$$

and we have that

$$\text{Tr}[X] = \langle \Gamma | (X \otimes \mathbb{1}) |\Gamma\rangle = \langle \Gamma | \text{vec}(X). \quad (22)$$

Now, taking $\text{vec}(\cdot)$ on both sides of Eq. (6), we obtain

$$\frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} \text{vec}\left(X^{\vec{j}} Z^{\vec{k}} \rho (X^{\vec{j}} Z^{\vec{k}})^\dagger\right) = \frac{|\Gamma\rangle\langle\Gamma| \text{vec}(\rho)}{2^n} = |\Phi^+\rangle\langle\Phi^+| \text{vec}(\rho) \quad (23)$$

$$\Rightarrow \frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} (X^{\vec{j}} Z^{\vec{k}} \otimes \overline{X^{\vec{j}} Z^{\vec{k}}}) \text{vec}(\rho) = |\Phi^+\rangle\langle\Phi^+| \text{vec}(\rho) \quad (24)$$

$$\Rightarrow \frac{1}{2^{2n}} \sum_{\vec{j}, \vec{k}} (X^{\vec{j}} Z^{\vec{k}} \otimes X^{\vec{j}} Z^{\vec{k}}) \text{vec}(\rho) = |\Phi^+\rangle\langle\Phi^+| \text{vec}(\rho) \quad (25)$$

Since the operator ρ is arbitrary, we obtain the desired result. \square

3 n -qubit Pauli channels

An n -qubit Pauli channel corresponds to the action of random n -qubit Pauli operators on a quantum state ρ according to some probability distribution. Let $\mathcal{P}^{(n)}$ denote an n -qubit Pauli channel. Then the action of $\mathcal{P}^{(n)}$ on the state ρ is given by

$$\mathcal{P}_{\vec{p}}^{(n)}(\rho) = \sum_{\vec{j}, \vec{k}} p_{\vec{j}, \vec{k}} X^{\vec{j}} Z^{\vec{k}} \rho (X^{\vec{j}} Z^{\vec{k}})^\dagger, \quad (26)$$

where $0 \leq p_{\vec{j}, \vec{k}} \leq 1$, and $\sum_{\vec{j}, \vec{k}} p_{\vec{j}, \vec{k}} = 1$. Using the properties in Eq. (5), we find that

$$\mathcal{P}_{\vec{p}}^{(n)}(X^{\vec{a}} Z^{\vec{b}}) = \sum_{\vec{j}, \vec{k}} p_{\vec{j}, \vec{k}} X^{\vec{j}} Z^{\vec{k}} X^{\vec{a}} Z^{\vec{b}} Z^{\vec{k}} X^{\vec{j}} \quad (27)$$

$$= \sum_{\vec{j}, \vec{k}} (-1)^{\vec{a} \cdot \vec{k}} (-1)^{\vec{b} \cdot \vec{j}} p_{\vec{j}, \vec{k}} X^{\vec{a}} Z^{\vec{b}} \quad (28)$$

$$= c_{\vec{a}, \vec{b}} X^{\vec{a}} Z^{\vec{b}}, \quad (29)$$

where

$$c_{\vec{a}, \vec{b}} := \sum_{\vec{j}, \vec{k}} (-1)^{\vec{a} \cdot \vec{k}} (-1)^{\vec{b} \cdot \vec{j}} p_{\vec{j}, \vec{k}}. \quad (30)$$

We have that $-1 \leq c_{\vec{a}, \vec{b}} \leq 1$ for all $\vec{a}, \vec{b} \in \{0, 1\}^n$.

Observe that Pauli channels are diagonal in the Pauli basis, in the sense that if we define the matrix $P_{\vec{p}}^{(n)}$ as

$$(P_{\vec{p}}^{(n)})_{\vec{j}, \vec{k}} = \frac{1}{2^n} \text{Tr}[(X^{\vec{j}} Z^{\vec{k}})^\dagger \mathcal{P}_{\vec{p}}^{(n)}(X^{\vec{j}} Z^{\vec{k}})], \quad (31)$$

then by using the properties in (5) we get

$$(P_{\vec{p}}^{(n)})_{\vec{j}, \vec{k}} = c_{\vec{j}, \vec{k}} \delta_{\vec{j}, \vec{j}'} \delta_{\vec{k}, \vec{k}'}. \quad (32)$$

4 Depolarizing channel

Given the general form of an n -qubit Pauli channel, namely

$$\mathcal{P}_{\vec{p}}^{(n)}(\cdot) = \sum_{\vec{j}, \vec{k}} p_{\vec{j}, \vec{k}} X^{\vec{j}} Z^{\vec{k}} (\cdot) (X^{\vec{j}} Z^{\vec{k}})^\dagger, \quad (33)$$

the depolarizing channel is defined by taking

$$p_{\vec{j}, \vec{k}} = \begin{cases} 1 - p & \text{if } \vec{j} = \vec{k} = \vec{0}, \\ \frac{p}{2^{2n} - 1} & \text{otherwise,} \end{cases} \quad (34)$$

for some $p \in [0, 1]$. We thus have the following definition of the n -qubit depolarizing channel \mathcal{D}_n :

$$\mathcal{D}_p^{(n)}(\rho) = (1 - p)\rho + \frac{p}{2^{2n} - 1} \sum_{(\vec{j}, \vec{k}) \neq (\vec{0}, \vec{0})} X^{\vec{j}} Z^{\vec{k}} \rho (X^{\vec{j}} Z^{\vec{k}})^\dagger. \quad (35)$$

In order to determine the coefficients $c_{\vec{a}, \vec{b}}$ of this channel, let us first write the action of the n -qubit depolarizing in a simpler form by making use of the identity in Eq. (6). We get

$$\mathcal{D}_p^{(n)}(\rho) = \left(1 - \frac{2^{2n}}{2^{2n} - 1} p\right) \rho + \frac{2^{2n}}{2^{2n} - 1} p \text{Tr}[\rho] \frac{\mathbb{1}}{2^n} \quad (36)$$

for all operators ρ . Now, since the operators $X^{\vec{a}} Z^{\vec{b}}$ are traceless for all $(\vec{a}, \vec{b}) \neq (\vec{0}, \vec{0})$, we have

$$\mathcal{D}_p^{(n)}(X^{\vec{a}} Z^{\vec{b}}) = \left(1 - \frac{2^{2n}}{2^{2n} - 1} p\right) X^{\vec{a}} Z^{\vec{b}} \quad \forall (\vec{a}, \vec{b}) \neq (\vec{0}, \vec{0}) \Rightarrow c_{\vec{a}, \vec{b}} = 1 - \frac{2^{2n}}{2^{2n} - 1} p, \quad (37)$$

$$\mathcal{D}_p^{(n)}(\mathbb{1}) = \mathbb{1} \Rightarrow c_{\vec{0}, \vec{0}} = 1. \quad (38)$$

Therefore, $c_{\vec{a}, \vec{b}} \geq 0$ if and only if $p \leq \frac{2^{2n} - 1}{2^{2n}}$.

5 Dephasing channels

The dephasing channel on n qubits is defined as follows:

$$\mathcal{Z}_{\vec{q}}^{(n)}(\rho) = \sum_{\vec{k}} q_{\vec{k}} Z^{\vec{k}} \rho Z^{\vec{k}}. \quad (39)$$

Then,

$$\mathcal{Z}_{\vec{q}}^{(n)}(X^{\vec{a}} Z^{\vec{b}}) = \sum_{\vec{k}} q_{\vec{k}} Z^{\vec{k}} (X^{\vec{a}} Z^{\vec{b}}) Z^{\vec{k}} \quad (40)$$

$$= \sum_{\vec{k}} q_{\vec{k}} (-1)^{\vec{a} \cdot \vec{k}} X^{\vec{a}} Z^{\vec{b}}, \quad (41)$$

so that

$$c_{\vec{a}, \vec{b}} = \sum_{\vec{k}} q_{\vec{k}} (-1)^{\vec{a} \cdot \vec{k}}. \quad (42)$$

Now, a special case of the n -qubit dephasing channels is the one in which

$$q_{\vec{k}} = \begin{cases} 1 - p & \text{if } \vec{k} = \vec{0}, \\ p & \text{if } \vec{k} = \vec{1}, \\ 0 & \text{otherwise,} \end{cases} \quad (43)$$

for some $p \in [0, 1]$. In this case,

$$\tilde{\mathcal{Z}}_p^{(n)}(\rho) = (1 - p)\rho + p(Z \otimes \cdots \otimes Z) \rho (Z \otimes \cdots \otimes Z). \quad (44)$$

Then, we have

$$c_{\vec{a},\vec{b}} = q_{\vec{0}} + (-1)^{\vec{a} \cdot \vec{1}} q_{\vec{1}} = 1 - p + (-1)^{|\vec{a}|} p = \begin{cases} 1 & \text{if } |\vec{a}| \text{ even,} \\ 1 - 2p & \text{if } |\vec{a}| \text{ odd,} \end{cases} \quad (45)$$

where $|\vec{a}|$ denotes the Hamming weight (number of ones) in the bit string \vec{a} . Therefore, in this case, we have $c_{\vec{a},\vec{b}} \geq 0$ if and only if $p \leq \frac{1}{2}$.

Another special case is the one in which $q_{\vec{k}} = \frac{1}{2^n}$ for all \vec{k} , so that

$$\bar{\mathcal{Z}}^{(n)}(\rho) := \frac{1}{2^n} \sum_{\vec{k}} Z^{\vec{k}} \rho Z^{\vec{k}}. \quad (46)$$

For any input operator ρ , this channel returns a diagonal state consisting of the diagonal elements of ρ in the standard basis. Indeed, let ρ be written in the standard basis as

$$\rho = \sum_{\vec{k},\vec{\ell}} x_{\vec{k},\vec{\ell}} |\vec{k}\rangle\langle\vec{\ell}|. \quad (47)$$

Then,

$$\bar{\mathcal{Z}}^{(n)}(\rho) = \frac{1}{2^n} \sum_{\vec{j}} Z^{\vec{j}} \rho Z^{\vec{j}} \quad (48)$$

$$= \frac{1}{2^n} \sum_{\vec{j},\vec{k},\vec{\ell}} x_{\vec{k},\vec{\ell}} Z^{\vec{j}} |\vec{k}\rangle\langle\ell| Z^{\vec{j}} \quad (49)$$

$$= \frac{1}{2^n} \sum_{\vec{j},\vec{k},\vec{\ell}} x_{\vec{k},\vec{\ell}} (-1)^{\vec{j} \cdot (\vec{k} \oplus \vec{\ell})} |\vec{k}\rangle\langle\ell| \quad (50)$$

$$= \frac{1}{2^n} \sum_{\vec{k},\vec{\ell}} x_{\vec{k},\vec{\ell}} x_{\vec{k},\vec{\ell}} \underbrace{\left(\sum_{\vec{j}} (-1)^{\vec{j} \cdot (\vec{k} \oplus \vec{\ell})} \right)}_{2^n \delta_{\vec{k},\vec{\ell}}} |\vec{k}\rangle\langle\ell| \quad (51)$$

$$= \sum_{\vec{k},\vec{\ell}} x_{\vec{k},\vec{k}} |\vec{k}\rangle\langle\vec{k}|. \quad (52)$$

In this special case, we have that

$$c_{\vec{a},\vec{b}} = \frac{1}{2^n} \sum_{\vec{k}} (-1)^{\vec{a} \cdot \vec{k}} = \delta_{\vec{a},\vec{0}} \quad (53)$$

for all \vec{a}, \vec{b} .

The dephasing channel in Eq. (46) can be generalized as follows:

$$\mathcal{Z}_p^{(n)}(\rho) = (1 - p)\rho + \frac{p}{2^n - 1} \sum_{\vec{k} \neq \vec{0}} Z^{\vec{k}} \rho Z^{\vec{k}}, \quad (54)$$

where $p \in [0, 1]$. Then, $\bar{\mathcal{Z}}^{(n)} = \mathcal{Z}_{1-\frac{1}{2^n}}^{(n)}$. In this case, we have

$$c_{\vec{a}, \vec{b}} = 1 - \frac{2^n}{2^n - 1} p + \frac{p}{2^n - 1} \delta_{\vec{a}, \vec{0}} \quad (55)$$

for all \vec{a}, \vec{b} . This is non-negative if and only if $p \leq \frac{2^n - 1}{2^n}$.

6 Bit-flip channels

The bit-flip channel on n qubits is defined analogously to the n -qubit dephasing channel above:

$$\mathcal{X}_{\vec{r}}^{(n)}(\rho) = \sum_{\vec{k}} r_{\vec{k}} X^{\vec{k}} \rho X^{\vec{k}}. \quad (56)$$

Then, by the same arguments as for the dephasing channel, we get

$$c_{\vec{a}, \vec{b}} = \sum_{\vec{k}} r_{\vec{k}} (-1)^{\vec{b} \cdot \vec{k}}. \quad (57)$$

As with the dephasing channel, we define

$$\tilde{\mathcal{X}}_p^{(n)}(\rho) = (1 - p)\rho + p(X \otimes \cdots \otimes X)\rho(X \otimes \cdots \otimes X), \quad (58)$$

so that

$$c_{\vec{a}, \vec{b}} = \begin{cases} 1 & \text{if } |\vec{b}| \text{ even,} \\ 1 - 2p & \text{if } |\vec{b}| \text{ odd.} \end{cases} \quad (59)$$

We can also define the channel

$$\bar{\mathcal{X}}^{(n)} = \frac{1}{2^n} \sum_{\vec{j}} X^{\vec{j}} \rho X^{\vec{j}}, \quad (60)$$

which has the following effect on any operator $\rho = \sum_{\vec{k}, \vec{\ell}} x_{\vec{k}, \vec{\ell}} |\vec{k}\rangle \langle \vec{\ell}|$:

$$\bar{\mathcal{X}}^{(n)} = \frac{1}{2^n} \sum_{\vec{j}} X^{\vec{j}} \rho X^{\vec{j}} \quad (61)$$

$$= \frac{1}{2^n} \sum_{\vec{j}, \vec{k}, \vec{\ell}} x_{\vec{k}, \vec{\ell}} |\vec{k} \oplus \vec{j}\rangle \langle \vec{\ell} \oplus \vec{j}| \quad (62)$$

$$= \sum_{\vec{k}', \vec{\ell}'} \left(\frac{1}{2^n} \sum_{\vec{j}} x_{\vec{k}' \oplus \vec{j}, \vec{\ell}' \oplus \vec{j}} \right) |\vec{k}'\rangle \langle \vec{\ell}'|. \quad (63)$$

In this special case, we have

$$c_{\vec{a}, \vec{b}} = \delta_{\vec{b}, \vec{0}}. \quad (64)$$

Finally, we can define the channel

$$\mathcal{X}_p^{(n)}(\rho) = (1-p)\rho + \frac{p}{2^n - 1} \sum_{\vec{k} \neq \vec{0}} X^{\vec{k}} \rho X^{\vec{k}}, \quad (65)$$

where $p \in [0, 1]$. Then, $\overline{\mathcal{X}}^{(n)} = \mathcal{X}_{1-\frac{1}{2^n}}^{(n)}$. In this case, we have

$$c_{\vec{a}, \vec{b}} = 1 - \frac{2^n}{2^n - 1} p + \frac{p}{2^n - 1} \delta_{\vec{b}, \vec{0}}. \quad (66)$$