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1 General considerations

The BB84 [BB84] and six-state [Bru98, BPG99] protocols are prepare-and-measure quantum key
distribution (QKD) protocols in which Alice and Bob make use of states and measurements from
mutually unbiased bases in order to distill a secret key. In this note, we provide details of the some
of the steps used in the analysis of the BB84 and six-state protocols. The main goal is to show how
the security of the key in both protocols can be determined by estimation of just one parameter @),
called the quantum bit-error rate (QBER).

In both the BB84 and six-state protocols, Alice has two pieces of information, X; and Xo. X3
is the random variable for Alice’s basis choice, and X5 is the binary random variable corresponding
to the state taken from the chosen basis. The random variables X; and X, are independent.
Similarly, Bob has two pieces of information, Y7 and Y5. Y7 is the random variable for Bob’s choice
of measurement basis, and Y5 is the random variable for the outcome of the measurement.

Let the alphabet B contain the possible basis choices. The random variables X; and Y; take
values in B. For the six-state protocol, Bsix-state = {0, 1,2}, with “0” denoting the Z-basis, “1” the
X-basis, and “2” the Y-basis. For the BB84 protocol, Bppss = {0,1}. Then, let ql‘;‘ and qf be the
probabilities that Alice and Bob, respectively, choose the basis b € B. In other words,

g =Pr[X; =b], ¢f =Pr[y; =0 (1)



Let us make the following definitions:

= [0)(0] = p°, T = 1)(1] = py", (2)
I = [+)(+| = pi’, I} = |-)(—|=pji, (3)
3 = | +i) (4] = p5°, T3 = | —i)(—i] = p5". (4)

Now, Alice chooses the basis by € B with probability qé‘}4 , and with probability % chooses one

b 4,0

of the two states {p{'", p i{"l} in the basis to send to Bob. These choices are independent, so we

have

()

The state pbA “ is sent through a qubit-to-qubit quantum channel AN4_, 5 that is general unknown
to Alice and Bob.

1
pX1X2(bAax) = PT[Xl = bA,XQ = :p] — q1174A . 5

Once Bob receives the state, with probability q{)BB he decides to measure in the basis bg given
by the POVM {HgB , HI{B }. The corresponding conditional probability distribution is then

Pvivalxi X, (0B ylba, @) = Pr[Y1 = bp, Yo = y| X1 = ba, Xo = 2] = ¢}, Tr[IIPNa,5(p T (6)

The complete joint probability distribution is then

pX1X2Y1Y2(bA)x7 vay) = PI'[Xl = bA7 X2 =z, Yl = va Y2 = y] (7)
= Pyiva|x1x2 (0B, Ylba, )px, X, (ba, 7) (8)

1 b
= iqaqi’ Tr[ NAHB( A1), (9)

The full classical-classical state corresponding to the probability distribution in (16) can then be
written as

PX1XoY1Ys = Z E 7ququ Hb NA—}B( ’x)]|bA7bB><bA7bB|X1Y1 ® ‘$7y><$’y’X2YQ‘ (10)
ba,bpeBx,y=0

Remark 1. Let us now show how the prepare-and-measure protocol as described so far is equivalent
to an entanglement-based protocol. First, let

php = (ida ® Naop) (|97)(@F] o) (11)

be the Choi state of the channel Nf_ﬂg. Then, observe that

gi, al, TrlpS (1A @ 107 )]

= g\ af, Tr [ (ida © Ny ) (0 )@ [100) (4 @ TT4)] (12)

= diy @iy (| @ N, o (T12))[27F) (13)
1 T

= Saihan, Tr(I0A) N, (I1P)] (14)



1
= Sy oy, TP N A B ((T13)T)) (15)

for allba,bp € B and all x,y € {0, 1}, where we have made use of the transpose trick to obtain the

third equality. Using the equivalence TI%A = pl;("x, we thus obtain

Pxixeviye (b4, 7,08, 9) = ¢ ab, Te[php(124)" ® 1z, (16)
for allba,bp € B and all z,y € {0,1}.

The equality in (16) means that we can view the prepare-and-measure protocol in terms of an
entanglement-based protocol in which Alice prepares two qubits in a maximally-entangled state and
sends one of the qubits to Bob. Alice then chooses a basis by € B and measures her qubit with the
POVM {(HgA)T, (I54)T}. Similarly, Bob chooses a basis bg € B and measures his qubit with the
POVM {II5E 112 }. Note that

([0)0)T =10)¢0f,  (ILANT = [1)(Lf,  (|ENEDT = [E) (] (17)
However, we have
(| £0)(HD" = [ Fi)(H], (18)

which means that for the entanglement-based protocol, in the ideal case, Alice and Bob’s data are
anti-correlated in the Y -basis.

Now, we define for each b € B a quantum bit-error rate (QBER) Q) as the probability that
Alice and Bob’s measurement outcomes disagree, given that they both used the same basis, i.e.,

Qy = Pr[Xs # V3| X1 = V1 = 1] (19)
= PI"[XQ =0,Y; = 1|X1 =Y = b} —{—PI‘[XQ =1,Y = 0|X1 =Y = b] (20)
_ Pr[X,=0,Yo=1,X; =b,Y) =] N Pr[Xo =1,Y2 =0,X; =b,Y; = b] (21)
N Pr[X; =b,Y] = b] Pr[X; =b,Y] = b]

1 1 b,0 1 b,1
= W <2%4Q£ Tr[Hl{NAaB(PA )]+ qu‘qu? TF[H?)NA%B(PA )]) (22)
1

= 5 (TN (0] + TN Ao 2 (0] (23)

In what follows, we let @, = Qo, @ = Q1, and Q, = Qo.

1.1 Channel twirling

Since the channel N4_,p is unknown to Alice and Bob, their task is to determine whether any
eavesdropping has occurred by estimating the conditional probability distribution py,y;|x, x,, and
using this estimate to decide whether their data is too noisy to proceed with further key distillation
steps!. This esimation step is called parameter estimation.

'In QKD, we assume the worst-case scenario in which any deviation of the channel M4_, 5 from an ideal one (i.e.,
the identity channel) is due to an eavesdropper.



In order to simplify the parameter estimation step, it is common to add an additional channel
twirling step to the protocol, which essentially reduces the number of parameters that need to be
estimated. In channel twirling, Alice picks at random one of the unitaries from the set {1, X,Y, Z}
and applies it to her qubit before sending it through the channel to Bob. Alice also communicates
this choice to Bob through a public authenticated channel, so that after he receives Alice’s state
he applies the inverse of the same unitary to it before performing his measurement. If we let Z be
the random variable for Alice’s choice of unitary, then

PY1Ya X1 X22 (0B, Ylba, @, 2) = Pr[Y1 = bp, Yo = y| X1 = ba, Xo = 2,7 = £] (24)
= gf TP U N 5 (U0 U U], (25)

where z € {0,1,2,3}, U’ =1, U' = X, U? =Y, U? = Z. Then,

DX, Xov1 vz (ba, 2,0y, 2) = Pr[X; =ba, Xo =2,Y1 = bp, Yo =y, Z = 7] (26)
= Pyiva|x1X22 (0B, Ylba, T, 2)px, x5 2(ba, @, 2) (27)
_ % . iqg; g T2 U=N L p(U= o U0, (28)
and
PX1X2V1YaZ (29)
13

1 Trrz z
= Z Z qulﬁxqi T[22 U N4, 5 (U0 U U [ba, bi) (ba, belx, v,
ba,bpeB z,y=0 2=0

® |2, y)(, Yl xov, @ [2)(2]2- (30)

By forgetting the choice of the unitary (which means tracing out the classical register Z), we get

1
1 + b
PX1XoY1Yo = Z Z 5(]1124(]135; Tr[HZBNA%B(pAAw)”bAv bp)(ba, bB‘X1Y1 ® |z, y) <$,y|X2Y2, (31)
ba,bpeB z,y=0

where

3
Noaopl) = i SO UHNL (U (YU U (32)
z=0

is the twirled channel. It is straightforward to show (see, e.g., [DHCBO05]) that the twirled channel
is a Pauli channel. In particular,

Noaon(oa) = N o) = (1 5Qu+ @y +Q2) ) o+ 5(Qs = Qs+ Q) XpaX

£ 3@ Q@Y paAY +5(Q)— @+ Qu)ZpaZ  (33)
1.2 Sifting

In both the BB84 and six-state protocols, there is a step called sifting, in which Alice and Bob
discard the rounds in which they chose different bases. The resulting data is then used for parameter



estimation, which is followed by key distillation. Let

My, = > b,0)(b, blx,v; (34)
beB

be the projection onto the subspace corresponding to the same basis choice by Alice and Bob.
Then, we define the state

sift , Hgi(fltYl PX1Y1X2Y2 Hgi'fltYl

PX1XoY1Ye = ] (35)

Dsift

1 ! 1 b b,x

= Z Z iqb dp TI‘[H NA%B( Pa )”67 b){b,blx,v; ® ‘x7y><$7y’X2Y27 (36)

Dsift belB z,y—0

where

Pt = Y @ (37)

beB
is the probability that Alice and Bob chose the same basis. The resulting probability distribution
is
sift (b, 2, b, y) = qb a4 Tr HbN b,z 38
pX1X2Y1Y2 &€, ) 2p51ft [ A—)B( A )}7 ( )

and it is for this (conditional) probability distribution for which parameter estimation occurs and
using which key distillation occurs in both the BB84 and six-state protocols.

The full classical-classical-quantum state of Alice, Bob, and the eavesdropper, can be written

via an isometric extension Uﬁ/_cf pp of the channel Nf - Specifically,

si b,x,
P xayivaE = P~ Z Z 9@ Pxavalxavs (%, 91D, )b, ) (b, bl x v @ |2, y) (0, ylxows © pi™Y, (39)
S beB z,y=0
where
b,z
pX2Y2|X1Y1(‘T’y|b7 b) 7Tr[HbNA—>B(pA )]7 (40)

bw,y 1 by NG b,x
p Trp[IL,U pA)] 41
E pXQYQ‘XlYl (JJ, y’b, b) [ Y AHBE'( A )] ( )

1.3 Discarding basis information

Discarding, or “forgetting”, the basis information corresponds to tracing out the registers X; and
Y7 containing the basis information for Alice and Bob, respectively. We then have

1 1
Py, = T DX xavive] = Z <quqb HbNAﬁB( )]) 2, y) (@, Ylxov,- (42)

Dsift o y— 0 beB



2 BB&84 protocol

For the BB84 protocol, we have B = Bppgs = {0, 1}, corresponding to the X and Z bases. We
typically take g{' = % = P for all b € B, so that pgs = % The state in (36) is

11
BBS84|sift 1 1 b,
PX1X2|SY1Y2 = Z Z 5% a Tr[HbNAaB( Agg)”by b) (b, bl x, v, ® |z, y) (2, Y| X575, (43)
Dsift b—0 7,y—=0
and
BB84|sif q q b,
lelei/llg/g (b7 €, b? y) l;) lf)t Tr [HbNAﬁB(pAI)]v be {07 1}7 z,y € {07 1} (44)
S1
We then have
BB84|sift qf‘qlB [ s} ] 1
S1 -
BB84|sift qf‘qlB [ o} ] 1
Px, xov1y, (1, 0,1,1) = st Tr | [=)(=[BNi p([+){(+]a) | = ZQI’ (46)
S1. - =
BB84|sift CJf‘qlB [ s} T 1
Px, vy, (1 1,1,0) = P Tr ||[+){(+BN L g(I=){(=a)| = ZQ:E, (47)
S1 - -
BB84|sift qf‘qlB [ s} ] 1
pX1X2Y1Y2(17 L1, 1) = it Tr |_><_|BNA—)B(|_><_‘A) = Z(l Ql’)’ (48)
S1 - =
BB84|sift q(f‘ qéB I o) 1 1
Px,xov1vs (O’ O’O’O) = Wit Tr ‘0><0’BNA—>B(‘O><O|A) = Z(l - Qz)7 (49)
S1 - m
BB84|sift q64q(])3 [ s} T 1
pX1X2Y1Y2(07070’ 1) = ﬂTr |1><1’BNA—>B(‘O><O|A) = ZQZa (50)
si - -
BB84|sift %4 qéB I 9] 1 1
pX1X2Y1Y2<07170’0) = p it Tr ‘0><O’BNA4)B(‘1><1’A) = ZQZa (51)
S1 - -
BB84|sift @'l o T Q 1
Px,xomiv,(0,1,0,1) = Wt Tr |1><1’BNA_>B(‘1><1|A) =;(1-Q) (52)
S1 -
The mutual information of the full distribution p)B(Bfé‘;llf% is
1
I(XIXQ; Y1Y2)pBB84\sift = 5(4 - hQ(Qa:) - h2(Qz)) (53)
If we discard the basis information, then
f 1 o 1<
BB84|sift
pX2Y2|S1 = Z 5 Zq?qu Tr[HbNAaB( )} |x,y><x,y|X2y2, (54)
Dsift 2,y=0 2 b—0
so that the probability distribution is
BB84|sift BB84|sift BB84|sift

pX2Y2 (0 0) - X1X2Y1Y2(0707070) +pX1X2Y1Y2(]" 07 17 0) (]' - Qx) (]‘ - QZ)



1

=5(1-0) (55)
PRI 0,1) = PR (0,0,0,1) + PRV (L0, ) = Qe+ jQ = 5@ (56)
PRI 1,00 = RN, (0,1,0,0) + RV (L1 1,0 = J@u+ 3@ = 50, (0)
PRIV, 1) = PP, 0,1,0,1) + RV (11,11 = S01- Qo)+ 51— Q1)
=0-Q), (58)
where we have defined the average QBER
Q= 5@ +Q.) (59)

In other words, when we discard the basis information, Alice and Bob’s classical data can be
characterized using just one parameter.

Note that the the state pBBSZLlSlft can be simplified in the case that q{;‘ = % = qf . First, note
that
Iy = p' = H'ly)(ylH* Vbe {01}, Vye{o1}, (60)
where H is the Hadamard operator, defined as
H = [+)(0] + [-)(1]. (61)
Then,
1
b7
> aitalf TNE, 5 (657) ZTr Y y) (y| HN (B 2) (| ")) (62)
b=0
2> Tl (W HONE, 5 (H ) (| HY) H] (63)
YNy A-B AT
b 0
1
§TT ly) (vl ( ZHb A—B Hb|$><$|Hb)Hb>] (64)
1 A/BBS4,
= 3T [ln) (VDS Q<|x><x|>} 7 (65)
where
/\/;]f’_BfZ1 pa) = (1-2Q+ s)pa+ (Q — 8)ZpaZ + (Q — $)XpaX + sY paY (66)

is known as the BB84 channel in [SS08], @ = %(QI +Q.), and s = Q — % So we can write
BBS84[sift
PX5Ys

BB8451ft BB84
P = 3 Z T [I) NS 2 1) (@]l ) . (67)
z,y=0

Note that s € [0, Q)] is an open parameter, which arises because there is no Y-basis measurement in
the BB84 protocol, so that the QBER @), cannot be estimated by Alice and Bob. When calculating
the key rate, therefore, we must take the worst-case value for s.



3 Six-state protocol

For the six-state protocol, we have B = Bgx.state = {0, 1,2}, corresponding to the X, Y, and Z

bases. We typically take qg,4 = % = qu for all b € B, so that pgii = % The state in (36) is
2 1
i = LS S Lt TN NI b0, b, @ )
pX1X2Y1Y2 - Dsi 2qb qy Yy VA—-B pA y s VX Y1 Ty YTy Y| XaYss
sift b=0 z,y=0
and

A B N

6-state|sift q, 94 b

P (0, 2,b,y) = —; ff’t TN, 5 (055, be{0,1,2}, x,ye€{0,1}.
S1

We then have

A_B - - -
6-statesift a1 4q 1
P (1.0.1.0) = SO0k 1)+ AT () ()] = 60 - Q).
SI - -
A_B - - -
6-state|sift a1 4q 1
P (1,0,1,1) = L9 gy [| ) (< oA, 5 (14 (+a)] = = Qo
Dsift - - 6
A_ B - - -
6-state|sift a1 q 1
P (1,1,1,0) = T T {14 (4 pNEL (1) (1) | = 2 Qs
Dsift - - 6
A_B - - .
6-state|sift a1 4 1
PRy (1,1,1,1) = S T ) (— [N (=) (= [a) | = (1= Qu),
2p31ft - - 6
6-statelsift (0 0.0 0) _ QOAQOB Tr ‘O><O’ N@ (’0) <0‘ )_ — ,(1 _ Q )
Px, xov v, U U, U, U) = it I B/NA-B A1 756 Z/
6-state|sift 1) = Q64Q()B T I 1 NQ 1 _ 1
pX1X2Y1Y2(070707 ) - 9. . r ‘1>< |B A—)B(|0><O|A) - *sz
Dsift - - 6
6-state|sift 0.1.0.0) = Q64Q()B T [ 0)(0 NQ 1)1 1_ 1
pX1X2Y1Y2( ) Ly Yy )_ Deit r ‘ >< ’B A—)B(’ >< ‘A) - GQ'Z’
SI. - -
6-state|sift _ Q[I)4Q()B T [ ./\/’Q 1_ 1
P, xomiy, (0, 1,0,1) = D=2 T (1 NG p(1D)(1a) | = 2(1 = Q2),
Dsift - - 6
6-state|sift (2 0.2 0) _ Q§QQB Tr _‘ +Z><+‘L‘ NQ (‘ +Z><+‘L‘ )_ — 1(1 — Q )
pX1X2Y1Y2 s Uy &y - 2psift I B/NA B A | - 6 Y/
6-state|sift (2 0.2 1) o qééliqu Tr | —Z><—’L| NQ (| +Z><+’L‘ ) — EQ
pX1X2Y1Y2 e - 2psift L B A—B A ] - 6 Y
6-statesift (2,1,2,0) = Q§4QZB Tr ‘ +i) (4] NQ (| —i)(—i| ) — EQ
Px;xviva\ o b & V) = Ditt L BNA-B 4 16
6-state|sift (2 1.2 1) _ QQAQQB Tr ‘ —Z><—Z‘ N’Q (‘ —Z><—Z‘ ) — 1(1 _ Q )
PxiXovive 40 s % = 2Wsite i B/NA-B A 17 6 Y7

If we discard the basis information, then

1

2

6-statelsift 1 1 A B b @ b,

A O (qu 0 TGN 5 (o)) ) 12,9 (@ ylxave,
z,y=0 b=0

(82)



so that the probability distribution is

6-state|sift 6-state|sift 6-state|sift 6-state|sift
pXZ)Ze|SI (07 O) = pxj;;)'/?l}@ (07 07 Oa 0) + pXj;Qilfjlyz (17 07 17 O) + pxj;;)'/jl}@ (27 07 21 O)

= (1-Q) 4 Z(1-Q) +(1-Q) = 5(1-Q) (53)

6-statelsift 6-statelsift 6-statelsift 6-statelsift
Py (0,1) = PRI (0,0,0,1) + P (1,0, 1, 1) + SR (2,0,2,1)

1 1 1 1
Qe t gt g =39, (84)
6- if 6- if 6- if 6- if
P (1,0) = pseys (0,1,0,0) + pX Reseys (1,1,1,0) + pi oy (2,1,2,0)
1 1 1 1
Qe t gt 5@ =30, (85)

6-state|sift 6-state|sift 6-state|sift 6-state|sift
pXi}Ze|Sl (17 1) = pXj)?';zLTIYQ (07 17 Oa 1) +pX?)?'2e}|/jlY2(]-v 17 17 1) + pXj;Qilf?YQ (27 17 2a ]-)

1 1 1 1
:E(I_Qw)"‘g(l_QZ)"'é(l_Qy):i(l_Q)a (86)
where we have defined the average QBER
Q= Qe+ @+ Q) (57)

In other words, when we discard the basis information, Alice and Bob’s data can be characterized
using just one parameter.

Note that the state pggzgztemft can be simplified in the case that qé“ = % = qég. First, define the

operator

T = |[+)(0] — i[=)(1]. (88)
Then, observe that
Mg = [+)(+] = T|0){0|T", TIj = T[1)(1|T", (89)
I = | +i)(+i] = T?0)(0|T>, TIF = | —i)(—i| = T?[1) (1|7, (90)
In other words,
I, = %! = TPy (yIT", Vbe{0,1,2}), Vye{o1}. (91)
Therefore,
2 2
— . 1 —
> diay TGN 5(05")] = § Y TT )yl TN G 5 (7)) (| T1)] (92)
b=0 b=0
2
1 —
=5 2_ Tl WIT" N (1)) (| T T (93)
b=0
1 1< 5
=3 Tr |ly){yl <3 > T”NﬁB(T”!wa!T“)T”) (94)
b=0
1 -state,
= 2T [l WIVEE ) e (95)



where
Q=

is the depolarizing channel, with %(Qz + Qy + Q). So we have that

6-state|sif state,
P = Z () IV (@) 1,90 s . (97)
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