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1 General considerations

The BB84 [BB84] and six-state [Bru98, BPG99] protocols are prepare-and-measure quantum key
distribution (QKD) protocols in which Alice and Bob make use of states and measurements from
mutually unbiased bases in order to distill a secret key. In this note, we provide details of the some
of the steps used in the analysis of the BB84 and six-state protocols. The main goal is to show how
the security of the key in both protocols can be determined by estimation of just one parameter Q,
called the quantum bit-error rate (QBER).

In both the BB84 and six-state protocols, Alice has two pieces of information, X1 and X2. X1

is the random variable for Alice’s basis choice, and X2 is the binary random variable corresponding
to the state taken from the chosen basis. The random variables X1 and X2 are independent.
Similarly, Bob has two pieces of information, Y1 and Y2. Y1 is the random variable for Bob’s choice
of measurement basis, and Y2 is the random variable for the outcome of the measurement.

Let the alphabet B contain the possible basis choices. The random variables X1 and Y1 take
values in B. For the six-state protocol, Bsix-state = {0, 1, 2}, with “0” denoting the Z-basis, “1” the
X-basis, and “2” the Y -basis. For the BB84 protocol, BBB84 = {0, 1}. Then, let qAb and qBb be the
probabilities that Alice and Bob, respectively, choose the basis b ∈ B. In other words,

qAb := Pr[X1 = b], qBb := Pr[Y1 = b]. (1)
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Let us make the following definitions:

Π0
0 := |0〉〈0| ≡ ρ0,0A , Π0

1 := |1〉〈1| ≡ ρ0,1A , (2)

Π1
0 := |+〉〈+| ≡ ρ1,0A , Π1

1 := |−〉〈−| ≡ ρ1,1A , (3)

Π2
0 := |+i〉〈+i| ≡ ρ2,0A , Π2

1 := | −i〉〈−i| ≡ ρ2,1A . (4)

Now, Alice chooses the basis bA ∈ B with probability qAbA , and with probability 1
2 chooses one

of the two states {ρbA,0A , ρbA,1A } in the basis to send to Bob. These choices are independent, so we
have

pX1X2(bA, x) := Pr[X1 = bA, X2 = x] = qAbA ·
1

2
. (5)

The state ρbA,xA is sent through a qubit-to-qubit quantum channel NA→B that is general unknown
to Alice and Bob.

Once Bob receives the state, with probability qBbB he decides to measure in the basis bB given

by the POVM {ΠbB
0 ,ΠbB

1 }. The corresponding conditional probability distribution is then

pY1Y2|X1X2
(bB, y|bA, x) := Pr[Y1 = bB, Y2 = y|X1 = bA, X2 = x] = qBbB Tr[ΠbB

y NA→B(ρbA,xA )]. (6)

The complete joint probability distribution is then

pX1X2Y1Y2(bA, x, bB, y) := Pr[X1 = bA, X2 = x, Y1 = bB, Y2 = y] (7)

= pY1Y2|X1X2
(bB, y|bA, x)pX1X2(bA, x) (8)

=
1

2
qAbAq

B
bB

Tr[ΠbB
y NA→B(ρbA,xA )]. (9)

The full classical-classical state corresponding to the probability distribution in (16) can then be
written as

ρX1X2Y1Y2 =
∑

bA,bB∈B

1∑
x,y=0

1

2
qAbAq

B
bB

Tr[ΠbB
y NA→B(ρbA,xA )]|bA, bB〉〈bA, bB|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 . (10)

Remark 1. Let us now show how the prepare-and-measure protocol as described so far is equivalent
to an entanglement-based protocol. First, let

ρNAB := (idA ⊗NA′→B)(|Φ+〉〈Φ+|AA′) (11)

be the Choi state of the channel N ~Q
A→B. Then, observe that

qAbAq
B
bB

Tr[ρ
~Q
AB(ΠbA

x ⊗ΠbB
y )]

= qAbAq
B
bB

Tr
[
(idA ⊗NA′→B)(|Φ+〉〈Φ+|AA′)(ΠbA

x ⊗ΠbB
y )
]

(12)

= qAbAq
B
bB
〈Φ+|(ΠbA

x ⊗N
†
B→A(ΠbB

y ))|Φ+〉 (13)

=
1

2
qAbAq

B
bB

Tr[(ΠbA
x )TN †

B→A(ΠbB
y )] (14)
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=
1

2
qAbAq

B
bB

Tr[ΠbB
y NA→B((ΠbA

x )T)] (15)

for all bA, bB ∈ B and all x, y ∈ {0, 1}, where we have made use of the transpose trick to obtain the

third equality. Using the equivalence ΠbA
x ≡ ρ

bA,x
A , we thus obtain

pX1X2Y1Y2(bA, x, bB, y) = qAbAq
B
bB

Tr[ρNAB((ΠbA
x )T ⊗ΠbB

y )], (16)

for all bA, bB ∈ B and all x, y ∈ {0, 1}.

The equality in (16) means that we can view the prepare-and-measure protocol in terms of an
entanglement-based protocol in which Alice prepares two qubits in a maximally-entangled state and
sends one of the qubits to Bob. Alice then chooses a basis bA ∈ B and measures her qubit with the
POVM {(ΠbA

0 )T, (ΠbA
1 )T}. Similarly, Bob chooses a basis bB ∈ B and measures his qubit with the

POVM {ΠbB
0 ,ΠbB

1 }. Note that

(|0〉〈0|)T = |0〉〈0|, (|1〉〈1|)T = |1〉〈1|, (|±〉〈±|)T = |±〉〈±|. (17)

However, we have
(| ±i〉〈±i|)T = | ∓i〉〈∓i|, (18)

which means that for the entanglement-based protocol, in the ideal case, Alice and Bob’s data are
anti-correlated in the Y -basis.

Now, we define for each b ∈ B a quantum bit-error rate (QBER) Qb as the probability that
Alice and Bob’s measurement outcomes disagree, given that they both used the same basis, i.e.,

Qb := Pr[X2 6= Y2|X1 = Y1 = b] (19)

= Pr[X2 = 0, Y2 = 1|X1 = Y1 = b] + Pr[X2 = 1, Y2 = 0|X1 = Y1 = b] (20)

=
Pr[X2 = 0, Y2 = 1, X1 = b, Y1 = b]

Pr[X1 = b, Y1 = b]
+

Pr[X2 = 1, Y2 = 0, X1 = b, Y1 = b]

Pr[X1 = b, Y1 = b]
(21)

=
1

qAb q
B
b

(
1

2
qAb q

B
b Tr[Πb

1NA→B(ρb,0A )] +
1

2
qAb q

B
b Tr[Πb

0NA→B(ρb,1A )]

)
(22)

=
1

2

(
Tr[Πb

1NA→B(ρb,0A )] + Tr[Πb
0NA→B(ρb,1A )]

)
. (23)

In what follows, we let Qz ≡ Q0, Qx ≡ Q1, and Qy ≡ Q2.

1.1 Channel twirling

Since the channel NA→B is unknown to Alice and Bob, their task is to determine whether any
eavesdropping has occurred by estimating the conditional probability distribution pY1Y1|X1X2

, and
using this estimate to decide whether their data is too noisy to proceed with further key distillation
steps1. This esimation step is called parameter estimation.

1In QKD, we assume the worst-case scenario in which any deviation of the channel NA→B from an ideal one (i.e.,
the identity channel) is due to an eavesdropper.
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In order to simplify the parameter estimation step, it is common to add an additional channel
twirling step to the protocol, which essentially reduces the number of parameters that need to be
estimated. In channel twirling, Alice picks at random one of the unitaries from the set {1, X, Y, Z}
and applies it to her qubit before sending it through the channel to Bob. Alice also communicates
this choice to Bob through a public authenticated channel, so that after he receives Alice’s state
he applies the inverse of the same unitary to it before performing his measurement. If we let Z be
the random variable for Alice’s choice of unitary, then

pY1Y2|X1X2Z(bB, y|bA, x, z) := Pr[Y1 = bB, Y2 = y|X1 = bA, X2 = x, Z = z] (24)

= qBbB Tr[ΠbB
y U z†NA→B(U zρbA,xA U z†)U z], (25)

where z ∈ {0, 1, 2, 3}, U0 = 1, U1 = X, U2 = Y , U3 = Z. Then,

pX1X2Y1Y2Z(bA, x, bB, y, z) := Pr[X1 = bA, X2 = x, Y1 = bB, Y2 = y, Z = z] (26)

= pY1Y2|X1X2Z(bB, y|bA, x, z)pX1X2Z(bA, x, z) (27)

=
1

2
· 1

4
qAbAq

B
bB

Tr[ΠbB
y U z†NA→B(U zρbA,xA U z†)U z], (28)

and

ρX1X2Y1Y2Z (29)

=
∑

bA,bB∈B

1∑
x,y=0

3∑
z=0

1

8
qAbAq

B
bB

Tr[ΠbB
y U z†NA→B(U zρbA,xA U z†)U z]|bA, bB〉〈bA, bB|X1Y1

⊗ |x, y〉〈x, y|X2Y2 ⊗ |z〉〈z|Z . (30)

By forgetting the choice of the unitary (which means tracing out the classical register Z), we get

ρX1X2Y1Y2 =
∑

bA,bB∈B

1∑
x,y=0

1

2
qAbAq

B
bB

Tr[ΠbB
y NA→B(ρbA,xA )]|bA, bB〉〈bA, bB|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 , (31)

where

NA→B(·) :=
1

4

3∑
z=0

U z†NA→B(U z(·)U z†)U z (32)

is the twirled channel. It is straightforward to show (see, e.g., [DHCB05]) that the twirled channel
is a Pauli channel. In particular,

NA→B(ρA) = N ~Q
A→B(ρA) :=

(
1− 1

2
(Qx +Qy +Qz)

)
ρA +

1

2
(Qz −Qx +Qy)XρAX

+
1

2
(Qx −Qy +Qz)Y ρAY +

1

2
(Qy −Qz +Qx)ZρAZ. (33)

1.2 Sifting

In both the BB84 and six-state protocols, there is a step called sifting, in which Alice and Bob
discard the rounds in which they chose different bases. The resulting data is then used for parameter
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estimation, which is followed by key distillation. Let

Πsift
X1Y1

:=
∑
b∈B
|b, b〉〈b, b|X1Y1 (34)

be the projection onto the subspace corresponding to the same basis choice by Alice and Bob.
Then, we define the state

ρsiftX1X2Y1Y2
:=

Πsift
X1Y1

ρX1Y1X2Y2Πsift
X1Y1

psift
(35)

=
1

psift

∑
b∈B

1∑
x,y=0

1

2
qAb q

B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]|b, b〉〈b, b|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 , (36)

where
psift =

∑
b∈B

qAb q
B
b (37)

is the probability that Alice and Bob chose the same basis. The resulting probability distribution
is

psiftX1X2Y1Y2(b, x, b, y) :=
qAb q

B
b

2psift
Tr[Πb

yN
~Q
A→B(ρb,xA )], (38)

and it is for this (conditional) probability distribution for which parameter estimation occurs and
using which key distillation occurs in both the BB84 and six-state protocols.

The full classical-classical-quantum state of Alice, Bob, and the eavesdropper, can be written

via an isometric extension UN ~Q

A→BE of the channel N ~Q
A→B. Specifically,

ρsiftX1X2Y1Y2E =
1

psift

∑
b∈B

1∑
x,y=0

qAb q
B
b pX2Y2|X1Y1(x, y|b, b)|b, b〉〈b, b|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 ⊗ ρ

b,x,y
E , (39)

where

pX2Y2|X1Y1(x, y|b, b) =
1

2
Tr[Πb

yN
~Q
A→B(ρb,xA )], (40)

ρb,x,yE =
1

pX2Y2|X1Y1(x, y|b, b)
TrB[Πb

yUN ~Q

A→BE(ρb,xA )]. (41)

1.3 Discarding basis information

Discarding, or “forgetting”, the basis information corresponds to tracing out the registers X1 and
Y1 containing the basis information for Alice and Bob, respectively. We then have

ρsiftX2Y2
:= TrX1Y1 [ρsiftX1X2Y1Y2 ] =

1

psift

1∑
x,y=0

1

2

(∑
b∈B

qAb q
B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]

)
|x, y〉〈x, y|X2Y2 . (42)
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2 BB84 protocol

For the BB84 protocol, we have B = BBB84 = {0, 1}, corresponding to the X and Z bases. We
typically take qAb = 1

2 = qBb for all b ∈ B, so that psift = 1
2 . The state in (36) is

ρ
BB84|sift
X1X2Y1Y2

:=
1

psift

1∑
b=0

1∑
x,y=0

1

2
qAb q

B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]|b, b〉〈b, b|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 , (43)

and

p
BB84|sift
X1X2Y1Y2

(b, x, b, y) =
qAb q

B
b

2psift
Tr[Πb

yN
~Q
A→B(ρb,xA )], b ∈ {0, 1}, x, y ∈ {0, 1}. (44)

We then have

p
BB84|sift
X1X2Y1Y2

(1, 0, 1, 0) =
qA1 q

B
1

2psift
Tr
[
|+〉〈+|BN

~Q
A→B(|+〉〈+|A)

]
=

1

4
(1−Qx), (45)

p
BB84|sift
X1X2Y1Y2

(1, 0, 1, 1) =
qA1 q

B
1

2psift
Tr
[
|−〉〈−|BN

~Q
A→B(|+〉〈+|A)

]
=

1

4
Qx, (46)

p
BB84|sift
X1X2Y1Y2

(1, 1, 1, 0) =
qA1 q

B
1

2psift
Tr
[
|+〉〈+|BN

~Q
A→B(|−〉〈−|A)

]
=

1

4
Qx, (47)

p
BB84|sift
X1X2Y1Y2

(1, 1, 1, 1) =
qA1 q

B
1

2psift
Tr
[
|−〉〈−|BN

~Q
A→B(|−〉〈−|A)

]
=

1

4
(1−Qx), (48)

p
BB84|sift
X1X2Y1Y2

(0, 0, 0, 0) =
qA0 q

B
0

2psift
Tr
[
|0〉〈0|BN

~Q
A→B(|0〉〈0|A)

]
=

1

4
(1−Qz), (49)

p
BB84|sift
X1X2Y1Y2

(0, 0, 0, 1) =
qA0 q

B
0

2psift
Tr
[
|1〉〈1|BN

~Q
A→B(|0〉〈0|A)

]
=

1

4
Qz, (50)

p
BB84|sift
X1X2Y1Y2

(0, 1, 0, 0) =
qA0 q

B
0

2psift
Tr
[
|0〉〈0|BN

~Q
A→B(|1〉〈1|A)

]
=

1

4
Qz, (51)

p
BB84|sift
X1X2Y1Y2

(0, 1, 0, 1) =
qA0 q

B
0

2psift
Tr
[
|1〉〈1|BN

~Q
A→B(|1〉〈1|A)

]
=

1

4
(1−Qz) (52)

The mutual information of the full distribution p
BB84|sift
X1X2Y1Y2

is

I(X1X2;Y1Y2)ρBB84|sift =
1

2
(4− h2(Qx)− h2(Qz)). (53)

If we discard the basis information, then

ρ
BB84|sift
X2Y2

=
1

psift

1∑
x,y=0

1

2

(
1∑
b=0

qAb q
B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]

)
|x, y〉〈x, y|X2Y2 , (54)

so that the probability distribution is

p
BB84|sift
X2Y2

(0, 0) = p
BB84|sift
X1X2Y1Y2

(0, 0, 0, 0) + p
BB84|sift
X1X2Y1Y2

(1, 0, 1, 0) =
1

4
(1−Qx) +

1

4
(1−Qz)
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=
1

2
(1−Q), (55)

p
BB84|sift
X2Y2

(0, 1) = p
BB84|sift
X1X2Y1Y2

(0, 0, 0, 1) + p
BB84|sift
X1X2Y1Y2

(1, 0, 1, 1) =
1

4
Qx +

1

4
Qz =

1

2
Q, (56)

p
BB84|sift
X2Y2

(1, 0) = p
BB84|sift
X1X2Y1Y2

(0, 1, 0, 0) + p
BB84|sift
X1X2Y1Y2

(1, 1, 1, 0) =
1

4
Qx +

1

4
Qz =

1

2
Q, (57)

p
BB84|sift
X2Y2

(1, 1) = p
BB84|sift
X1X2Y1Y2

(0, 1, 0, 1) + p
BB84|sift
X1X2Y1Y2

(1, 1, 1, 1) =
1

4
(1−Qx) +

1

4
(1−Qz)

=
1

2
(1−Q), (58)

where we have defined the average QBER

Q :=
1

2
(Qx +Qz). (59)

In other words, when we discard the basis information, Alice and Bob’s classical data can be
characterized using just one parameter.

Note that the the state ρ
BB84|sift
X2Y2

can be simplified in the case that qAb = 1
2 = qBb . First, note

that
Πb
y ≡ ρ

b,y
A = Hb|y〉〈y|Hb ∀ b ∈ {0, 1}, ∀ y ∈ {0, 1}, (60)

where H is the Hadamard operator, defined as

H := |+〉〈0|+ |−〉〈1|. (61)

Then,

1∑
b=0

qAb q
B
b Tr[Πb

yN
~Q
A→B(ρb,xA )] =

1

4

1∑
b=0

Tr[Hb|y〉〈y|HbN ~Q
A→B(Hb|x〉〈x|Hb)] (62)

=
1

4

1∑
b=0

Tr[|y〉〈y|HbN ~Q
A→B(Hb|x〉〈x|Hb)Hb] (63)

=
1

2
Tr

[
|y〉〈y|

(
1

2

1∑
b=0

HbN ~Q
A→B(Hb|x〉〈x|Hb)Hb

)]
(64)

=
1

2
Tr
[
|y〉〈y|NBB84,Q

A→B (|x〉〈x|)
]
, (65)

where
NBB84,Q
A→B (ρA) := (1− 2Q+ s)ρA + (Q− s)ZρAZ + (Q− s)XρAX + sY ρAY (66)

is known as the BB84 channel in [SS08], Q = 1
2(Qx + Qz), and s = Q − Qy

2 . So we can write

ρ
BB84|sift
X2Y2

as

ρ
BB84|sift
X2Y2

=
1

2

1∑
x,y=0

Tr
[
|y〉〈y|NBB84,Q

A→B (|x〉〈x|)
]
|x, y〉〈x, y|. (67)

Note that s ∈ [0, Q] is an open parameter, which arises because there is no Y -basis measurement in
the BB84 protocol, so that the QBER Qy cannot be estimated by Alice and Bob. When calculating
the key rate, therefore, we must take the worst-case value for s.
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3 Six-state protocol

For the six-state protocol, we have B = Bsix-state = {0, 1, 2}, corresponding to the X, Y , and Z
bases. We typically take qAb = 1

3 = qBb for all b ∈ B, so that psift = 1
3 . The state in (36) is

ρ
6-state|sift
X1X2Y1Y2

=
1

psift

2∑
b=0

1∑
x,y=0

1

2
qAb q

B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]|b, b〉〈b, b|X1Y1 ⊗ |x, y〉〈x, y|X2Y2 , (68)

and

p
6-state|sift
X1X2Y1Y2

(b, x, b, y) =
qAb q

B
b

2psift
Tr[Πb

yN
~Q
A→B(ρb,xA )], b ∈ {0, 1, 2}, x, y ∈ {0, 1}. (69)

We then have

p
6-state|sift
X1X2Y1Y2

(1, 0, 1, 0) =
qA1 q

B
1

2psift
Tr
[
|+〉〈+|BN

~Q
A→B(|+〉〈+|A)

]
=

1

6
(1−Qx), (70)

p
6-state|sift
X1X2Y1Y2

(1, 0, 1, 1) =
qA1 q

B
1

2psift
Tr
[
|−〉〈−|BN

~Q
A→B(|+〉〈+|A)

]
=

1

6
Qx, (71)

p
6-state|sift
X1X2Y1Y2

(1, 1, 1, 0) =
qA1 q

B
1

2psift
Tr
[
|+〉〈+|BN

~Q
A→B(|−〉〈−|A)

]
=

1

6
Qx, (72)

p
6-state|sift
X1X2Y1Y2

(1, 1, 1, 1) =
qA1 q

B
1

2psift
Tr
[
|−〉〈−|BN

~Q
A→B(|−〉〈−|A)

]
=

1

6
(1−Qx), (73)

p
6-state|sift
X1X2Y1Y2

(0, 0, 0, 0) =
qA0 q

B
0

2psift
Tr
[
|0〉〈0|BN

~Q
A→B(|0〉〈0|A)

]
=

1

6
(1−Qz), (74)

p
6-state|sift
X1X2Y1Y2

(0, 0, 0, 1) =
qA0 q

B
0

2psift
Tr
[
|1〉〈1|BN

~Q
A→B(|0〉〈0|A)

]
=

1

6
Qz, (75)

p
6-state|sift
X1X2Y1Y2

(0, 1, 0, 0) =
qA0 q

B
0

2psift
Tr
[
|0〉〈0|BN

~Q
A→B(|1〉〈1|A)

]
=

1

6
Qz, (76)

p
6-state|sift
X1X2Y1Y2

(0, 1, 0, 1) =
qA0 q

B
0

2psift
Tr
[
|1〉〈1|BN

~Q
A→B(|1〉〈1|A)

]
=

1

6
(1−Qz), (77)

p
6-state|sift
X1X2Y1Y2

(2, 0, 2, 0) =
qA2 q

B
2

2psift
Tr
[
|+i〉〈+i|BN

~Q
A→B(|+i〉〈+i|A)

]
=

1

6
(1−Qy), (78)

p
6-state|sift
X1X2Y1Y2

(2, 0, 2, 1) =
qA2 q

B
2

2psift
Tr
[
| −i〉〈−i|BN

~Q
A→B(|+i〉〈+i|A)

]
=

1

6
Qy, (79)

p
6-state|sift
X1X2Y1Y2

(2, 1, 2, 0) =
qA2 q

B
2

2psift
Tr
[
|+i〉〈+i|BN

~Q
A→B(| −i〉〈−i|A)

]
=

1

6
Qy, (80)

p
6-state|sift
X1X2Y1Y2

(2, 1, 2, 1) =
qA2 q

B
2

2psift
Tr
[
| −i〉〈−i|BN

~Q
A→B(| −i〉〈−i|A)

]
=

1

6
(1−Qy). (81)

If we discard the basis information, then

ρ
6-state|sift
X2Y2

=
1

psift

1∑
x,y=0

1

2

(
2∑
b=0

qAb q
B
b Tr[Πb

yN
~Q
A→B(ρb,xA )]

)
|x, y〉〈x, y|X2Y2 , (82)

8



so that the probability distribution is

p
6-state|sift
X2Y2

(0, 0) = p
6-state|sift
X1X2Y1Y2

(0, 0, 0, 0) + p
6-state|sift
X1X2Y1Y2

(1, 0, 1, 0) + p
6-state|sift
X1X2Y1Y2

(2, 0, 2, 0)

=
1

6
(1−Qx) +

1

6
(1−Qz) +

1

6
(1−Qy) =

1

2
(1−Q), (83)

p
6-state|sift
X2Y2

(0, 1) = p
6-state|sift
X1X2Y1Y2

(0, 0, 0, 1) + p
6-state|sift
X1X2Y1Y2

(1, 0, 1, 1) + p
6-state|sift
X1X2Y1Y2

(2, 0, 2, 1)

=
1

6
Qx +

1

6
Qy +

1

6
Qz =

1

2
Q, (84)

p
6-state|sift
X2Y2

(1, 0) = p
6-state|sift
X1X2Y1Y2

(0, 1, 0, 0) + p
6-state|sift
X1X2Y1Y2

(1, 1, 1, 0) + p
6-state|sift
X1X2Y1Y2

(2, 1, 2, 0)

=
1

6
Qx +

1

6
Qy +

1

6
Qz =

1

2
Q, (85)

p
6-state|sift
X2Y2

(1, 1) = p
6-state|sift
X1X2Y1Y2

(0, 1, 0, 1) + p
6-state|sift
X1X2Y1Y2

(1, 1, 1, 1) + p
6-state|sift
X1X2Y1Y2

(2, 1, 2, 1)

=
1

6
(1−Qx) +

1

6
(1−Qz) +

1

6
(1−Qy) =

1

2
(1−Q), (86)

where we have defined the average QBER

Q :=
1

3
(Qx +Qy +Qz). (87)

In other words, when we discard the basis information, Alice and Bob’s data can be characterized
using just one parameter.

Note that the state ρ
6-state|sift
X2Y2

can be simplified in the case that qAb = 1
3 = qBb . First, define the

operator
T := |+〉〈0| − i|−〉〈1|. (88)

Then, observe that

Π1
0 = |+〉〈+| = T |0〉〈0|T †, Π1

1 = T |1〉〈1|T †, (89)

Π2
0 = |+i〉〈+i| = T 2|0〉〈0|T 2†, Π2

1 = | −i〉〈−i| = T 2|1〉〈1|T 2†. (90)

In other words,
Πb
y ≡ ρ

b,y
A = T b|y〉〈y|T b†, ∀ b ∈ {0, 1, 2}, ∀ y ∈ {0, 1}. (91)

Therefore,

2∑
b=0

qAb q
B
b Tr[Πb

yN
~Q
A→B(ρb,xQ )] =

1

9

2∑
b=0

Tr[T b|y〉〈y|T b†N ~Q
A→B(T b|x〉〈x|T b†)] (92)

=
1

9

2∑
b=0

Tr[|y〉〈y|T b†N ~Q
A→B(T b|x〉〈x|T b†)T b] (93)

=
1

3
Tr

[
|y〉〈y|

(
1

3

2∑
b=0

T b†N ~Q
A→B(T b|x〉〈x|T b†)T b

)]
(94)

=
1

3
Tr
[
|y〉〈y|N 6-state,Q

A→B (|x〉〈x|)
]
, (95)

9



where

N 6-state,Q
A→B (ρA) :=

(
1− 3Q

2

)
ρA +

Q

2
XρAX +

Q

2
Y ρAY +

Q

2
ZρAZ (96)

is the depolarizing channel, with Q = 1
3(Qx +Qy +Qz). So we have that

ρ
6-state|sift
X2Y2

=
1

2

1∑
x,y=0

Tr
[
|y〉〈y|N 6-state,Q

A→B (|x〉〈x|)
]
|x, y〉〈x, y|. (97)
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