

Analysis of BB84 and Six-State Protocols

Sumeet Khatri

Table of Contents

1	General considerations	1
1.1	Channel twirling	3
1.2	Sifting	4
1.3	Discarding basis information	5
2	BB84 protocol	6
3	Six-state protocol	8
References		10

1 General considerations

The BB84 [BB84] and six-state [Bru98, BPG99] protocols are prepare-and-measure quantum key distribution (QKD) protocols in which Alice and Bob make use of states and measurements from mutually unbiased bases in order to distill a secret key. In this note, we provide details of the some of the steps used in the analysis of the BB84 and six-state protocols. The main goal is to show how the security of the key in both protocols can be determined by estimation of just one parameter Q , called the *quantum bit-error rate (QBER)*.

In both the BB84 and six-state protocols, Alice has two pieces of information, X_1 and X_2 . X_1 is the random variable for Alice’s basis choice, and X_2 is the binary random variable corresponding to the state taken from the chosen basis. The random variables X_1 and X_2 are independent. Similarly, Bob has two pieces of information, Y_1 and Y_2 . Y_1 is the random variable for Bob’s choice of measurement basis, and Y_2 is the random variable for the outcome of the measurement.

Let the alphabet \mathcal{B} contain the possible basis choices. The random variables X_1 and Y_1 take values in \mathcal{B} . For the six-state protocol, $\mathcal{B}_{\text{six-state}} = \{0, 1, 2\}$, with “0” denoting the Z -basis, “1” the X -basis, and “2” the Y -basis. For the BB84 protocol, $\mathcal{B}_{\text{BB84}} = \{0, 1\}$. Then, let q_b^A and q_b^B be the probabilities that Alice and Bob, respectively, choose the basis $b \in \mathcal{B}$. In other words,

$$q_b^A := \Pr[X_1 = b], \quad q_b^B := \Pr[Y_1 = b]. \quad (1)$$

Let us make the following definitions:

$$\Pi_0^0 := |0\rangle\langle 0| \equiv \rho_A^{0,0}, \quad \Pi_1^0 := |1\rangle\langle 1| \equiv \rho_A^{0,1}, \quad (2)$$

$$\Pi_0^1 := |+\rangle\langle +| \equiv \rho_A^{1,0}, \quad \Pi_1^1 := |-\rangle\langle -| \equiv \rho_A^{1,1}, \quad (3)$$

$$\Pi_0^2 := |+i\rangle\langle +i| \equiv \rho_A^{2,0}, \quad \Pi_1^2 := |-i\rangle\langle -i| \equiv \rho_A^{2,1}. \quad (4)$$

Now, Alice chooses the basis $b_A \in \mathcal{B}$ with probability $q_{b_A}^A$, and with probability $\frac{1}{2}$ chooses one of the two states $\{\rho_A^{b_A,0}, \rho_A^{b_A,1}\}$ in the basis to send to Bob. These choices are independent, so we have

$$p_{X_1 X_2}(b_A, x) := \Pr[X_1 = b_A, X_2 = x] = q_{b_A}^A \cdot \frac{1}{2}. \quad (5)$$

The state $\rho_A^{b_A,x}$ is sent through a qubit-to-qubit quantum channel $\mathcal{N}_{A \rightarrow B}$ that is general *unknown* to Alice and Bob.

Once Bob receives the state, with probability $q_{b_B}^B$ he decides to measure in the basis b_B given by the POVM $\{\Pi_0^{b_B}, \Pi_1^{b_B}\}$. The corresponding conditional probability distribution is then

$$p_{Y_1 Y_2 | X_1 X_2}(b_B, y | b_A, x) := \Pr[Y_1 = b_B, Y_2 = y | X_1 = b_A, X_2 = x] = q_{b_B}^B \text{Tr}[\Pi_y^{b_B} \mathcal{N}_{A \rightarrow B}(\rho_A^{b_A,x})]. \quad (6)$$

The complete joint probability distribution is then

$$p_{X_1 X_2 Y_1 Y_2}(b_A, x, b_B, y) := \Pr[X_1 = b_A, X_2 = x, Y_1 = b_B, Y_2 = y] \quad (7)$$

$$= p_{Y_1 Y_2 | X_1 X_2}(b_B, y | b_A, x) p_{X_1 X_2}(b_A, x) \quad (8)$$

$$= \frac{1}{2} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} \mathcal{N}_{A \rightarrow B}(\rho_A^{b_A,x})]. \quad (9)$$

The full classical-classical state corresponding to the probability distribution in (16) can then be written as

$$\rho_{X_1 X_2 Y_1 Y_2} = \sum_{b_A, b_B \in \mathcal{B}} \sum_{x, y=0}^1 \frac{1}{2} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} \mathcal{N}_{A \rightarrow B}(\rho_A^{b_A,x})] |b_A, b_B\rangle\langle b_A, b_B|_{X_1 Y_1} \otimes |x, y\rangle\langle x, y|_{X_2 Y_2}. \quad (10)$$

Remark 1. Let us now show how the prepare-and-measure protocol as described so far is equivalent to an entanglement-based protocol. First, let

$$\rho_{AB}^{\mathcal{N}} := (\text{id}_A \otimes \mathcal{N}_{A' \rightarrow B})(|\Phi^+\rangle\langle\Phi^+|_{AA'}) \quad (11)$$

be the Choi state of the channel $\mathcal{N}_{A \rightarrow B}^{\vec{Q}}$. Then, observe that

$$\begin{aligned} & q_{b_A}^A q_{b_B}^B \text{Tr}[\rho_{AB}^{\vec{Q}}(\Pi_x^{b_A} \otimes \Pi_y^{b_B})] \\ &= q_{b_A}^A q_{b_B}^B \text{Tr}[(\text{id}_A \otimes \mathcal{N}_{A' \rightarrow B})(|\Phi^+\rangle\langle\Phi^+|_{AA'})(\Pi_x^{b_A} \otimes \Pi_y^{b_B})] \end{aligned} \quad (12)$$

$$= q_{b_A}^A q_{b_B}^B \langle\Phi^+|(\Pi_x^{b_A} \otimes \mathcal{N}_{B \rightarrow A}^{\dagger}(\Pi_y^{b_B}))|\Phi^+\rangle \quad (13)$$

$$= \frac{1}{2} q_{b_A}^A q_{b_B}^B \text{Tr}[(\Pi_x^{b_A})^{\dagger} \mathcal{N}_{B \rightarrow A}^{\dagger}(\Pi_y^{b_B})] \quad (14)$$

$$= \frac{1}{2} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} \mathcal{N}_{A \rightarrow B}((\Pi_x^{b_A})^\top)] \quad (15)$$

for all $b_A, b_B \in \mathcal{B}$ and all $x, y \in \{0, 1\}$, where we have made use of the transpose trick to obtain the third equality. Using the equivalence $\Pi_x^{b_A} \equiv \rho_A^{b_A, x}$, we thus obtain

$$p_{X_1 X_2 Y_1 Y_2}(b_A, x, b_B, y) = q_{b_A}^A q_{b_B}^B \text{Tr}[\rho_{AB}^{\mathcal{N}}((\Pi_x^{b_A})^\top \otimes \Pi_y^{b_B})], \quad (16)$$

for all $b_A, b_B \in \mathcal{B}$ and all $x, y \in \{0, 1\}$.

The equality in (16) means that we can view the prepare-and-measure protocol in terms of an entanglement-based protocol in which Alice prepares two qubits in a maximally-entangled state and sends one of the qubits to Bob. Alice then chooses a basis $b_A \in \mathcal{B}$ and measures her qubit with the POVM $\{(\Pi_0^{b_A})^\top, (\Pi_1^{b_A})^\top\}$. Similarly, Bob chooses a basis $b_B \in \mathcal{B}$ and measures his qubit with the POVM $\{\Pi_0^{b_B}, \Pi_1^{b_B}\}$. Note that

$$(|0\rangle\langle 0|)^\top = |0\rangle\langle 0|, \quad (|1\rangle\langle 1|)^\top = |1\rangle\langle 1|, \quad (|\pm\rangle\langle \pm|)^\top = |\pm\rangle\langle \pm|. \quad (17)$$

However, we have

$$(|\pm i\rangle\langle \pm i|)^\top = |\mp i\rangle\langle \mp i|, \quad (18)$$

which means that for the entanglement-based protocol, in the ideal case, Alice and Bob's data are anti-correlated in the Y -basis.

Now, we define for each $b \in \mathcal{B}$ a quantum bit-error rate (QBER) Q_b as the probability that Alice and Bob's measurement outcomes disagree, given that they both used the same basis, i.e.,

$$Q_b := \Pr[X_2 \neq Y_2 | X_1 = Y_1 = b] \quad (19)$$

$$= \Pr[X_2 = 0, Y_2 = 1 | X_1 = Y_1 = b] + \Pr[X_2 = 1, Y_2 = 0 | X_1 = Y_1 = b] \quad (20)$$

$$= \frac{\Pr[X_2 = 0, Y_2 = 1, X_1 = b, Y_1 = b]}{\Pr[X_1 = b, Y_1 = b]} + \frac{\Pr[X_2 = 1, Y_2 = 0, X_1 = b, Y_1 = b]}{\Pr[X_1 = b, Y_1 = b]} \quad (21)$$

$$= \frac{1}{q_b^A q_b^B} \left(\frac{1}{2} q_b^A q_b^B \text{Tr}[\Pi_1^b \mathcal{N}_{A \rightarrow B}(\rho_A^{b,0})] + \frac{1}{2} q_b^A q_b^B \text{Tr}[\Pi_0^b \mathcal{N}_{A \rightarrow B}(\rho_A^{b,1})] \right) \quad (22)$$

$$= \frac{1}{2} \left(\text{Tr}[\Pi_1^b \mathcal{N}_{A \rightarrow B}(\rho_A^{b,0})] + \text{Tr}[\Pi_0^b \mathcal{N}_{A \rightarrow B}(\rho_A^{b,1})] \right). \quad (23)$$

In what follows, we let $Q_z \equiv Q_0$, $Q_x \equiv Q_1$, and $Q_y \equiv Q_2$.

1.1 Channel twirling

Since the channel $\mathcal{N}_{A \rightarrow B}$ is unknown to Alice and Bob, their task is to determine whether any eavesdropping has occurred by estimating the conditional probability distribution $p_{Y_1 Y_2 | X_1 X_2}$, and using this estimate to decide whether their data is too noisy to proceed with further key distillation steps¹. This estimation step is called *parameter estimation*.

¹In QKD, we assume the worst-case scenario in which any deviation of the channel $\mathcal{N}_{A \rightarrow B}$ from an ideal one (i.e., the identity channel) is due to an eavesdropper.

In order to simplify the parameter estimation step, it is common to add an additional *channel twirling* step to the protocol, which essentially reduces the number of parameters that need to be estimated. In channel twirling, Alice picks at random one of the unitaries from the set $\{\mathbb{1}, X, Y, Z\}$ and applies it to her qubit before sending it through the channel to Bob. Alice also communicates this choice to Bob through a public authenticated channel, so that after he receives Alice's state he applies the inverse of the same unitary to it before performing his measurement. If we let Z be the random variable for Alice's choice of unitary, then

$$p_{Y_1 Y_2 | X_1 X_2 Z}(b_B, y | b_A, x, z) := \Pr[Y_1 = b_B, Y_2 = y | X_1 = b_A, X_2 = x, Z = z] \quad (24)$$

$$= q_{b_B}^B \text{Tr}[\Pi_y^{b_B} U^{z\dagger} \mathcal{N}_{A \rightarrow B}(U^z \rho_A^{b_A, x} U^{z\dagger}) U^z], \quad (25)$$

where $z \in \{0, 1, 2, 3\}$, $U^0 = \mathbb{1}$, $U^1 = X$, $U^2 = Y$, $U^3 = Z$. Then,

$$p_{X_1 X_2 Y_1 Y_2 Z}(b_A, x, b_B, y, z) := \Pr[X_1 = b_A, X_2 = x, Y_1 = b_B, Y_2 = y, Z = z] \quad (26)$$

$$= p_{Y_1 Y_2 | X_1 X_2 Z}(b_B, y | b_A, x, z) p_{X_1 X_2 Z}(b_A, x, z) \quad (27)$$

$$= \frac{1}{2} \cdot \frac{1}{4} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} U^{z\dagger} \mathcal{N}_{A \rightarrow B}(U^z \rho_A^{b_A, x} U^{z\dagger}) U^z], \quad (28)$$

and

$$\rho_{X_1 X_2 Y_1 Y_2 Z} \quad (29)$$

$$= \sum_{b_A, b_B \in \mathcal{B}} \sum_{x, y=0}^1 \sum_{z=0}^3 \frac{1}{8} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} U^{z\dagger} \mathcal{N}_{A \rightarrow B}(U^z \rho_A^{b_A, x} U^{z\dagger}) U^z] |b_A, b_B\rangle \langle b_A, b_B|_{X_1 Y_1} \otimes |x, y\rangle \langle x, y|_{X_2 Y_2} \otimes |z\rangle \langle z|_Z. \quad (30)$$

By forgetting the choice of the unitary (which means tracing out the classical register Z), we get

$$\rho_{X_1 X_2 Y_1 Y_2} = \sum_{b_A, b_B \in \mathcal{B}} \sum_{x, y=0}^1 \frac{1}{2} q_{b_A}^A q_{b_B}^B \text{Tr}[\Pi_y^{b_B} \bar{\mathcal{N}}_{A \rightarrow B}(\rho_A^{b_A, x})] |b_A, b_B\rangle \langle b_A, b_B|_{X_1 Y_1} \otimes |x, y\rangle \langle x, y|_{X_2 Y_2}, \quad (31)$$

where

$$\bar{\mathcal{N}}_{A \rightarrow B}(\cdot) := \frac{1}{4} \sum_{z=0}^3 U^{z\dagger} \mathcal{N}_{A \rightarrow B}(U^z(\cdot) U^{z\dagger}) U^z \quad (32)$$

is the *twirled* channel. It is straightforward to show (see, e.g., [DHCB05]) that the twirled channel is a Pauli channel. In particular,

$$\begin{aligned} \bar{\mathcal{N}}_{A \rightarrow B}(\rho_A) = \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A) &:= \left(1 - \frac{1}{2}(Q_x + Q_y + Q_z)\right) \rho_A + \frac{1}{2}(Q_z - Q_x + Q_y) X \rho_A X \\ &+ \frac{1}{2}(Q_x - Q_y + Q_z) Y \rho_A Y + \frac{1}{2}(Q_y - Q_z + Q_x) Z \rho_A Z. \end{aligned} \quad (33)$$

1.2 Sifting

In both the BB84 and six-state protocols, there is a step called *sifting*, in which Alice and Bob discard the rounds in which they chose different bases. The resulting data is then used for parameter

estimation, which is followed by key distillation. Let

$$\Pi_{X_1 Y_1}^{\text{sift}} := \sum_{b \in \mathcal{B}} |b, b\rangle\langle b, b|_{X_1 Y_1} \quad (34)$$

be the projection onto the subspace corresponding to the same basis choice by Alice and Bob. Then, we define the state

$$\rho_{X_1 X_2 Y_1 Y_2}^{\text{sift}} := \frac{\Pi_{X_1 Y_1}^{\text{sift}} \rho_{X_1 Y_1 X_2 Y_2} \Pi_{X_1 Y_1}^{\text{sift}}}{p_{\text{sift}}} \quad (35)$$

$$= \frac{1}{p_{\text{sift}}} \sum_{b \in \mathcal{B}} \sum_{x, y=0}^1 \frac{1}{2} q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b, x})] |b, b\rangle\langle b, b|_{X_1 Y_1} \otimes |x, y\rangle\langle x, y|_{X_2 Y_2}, \quad (36)$$

where

$$p_{\text{sift}} = \sum_{b \in \mathcal{B}} q_b^A q_b^B \quad (37)$$

is the probability that Alice and Bob chose the same basis. The resulting probability distribution is

$$p_{X_1 X_2 Y_1 Y_2}^{\text{sift}}(b, x, b, y) := \frac{q_b^A q_b^B}{2p_{\text{sift}}} \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b, x})], \quad (38)$$

and it is for this (conditional) probability distribution for which parameter estimation occurs and using which key distillation occurs in both the BB84 and six-state protocols.

The full classical-classical-quantum state of Alice, Bob, and the eavesdropper, can be written via an isometric extension $\mathcal{U}_{A \rightarrow BE}^{\mathcal{N}_{A \rightarrow B}^{\vec{Q}}}$ of the channel $\mathcal{N}_{A \rightarrow B}^{\vec{Q}}$. Specifically,

$$\rho_{X_1 X_2 Y_1 Y_2 E}^{\text{sift}} = \frac{1}{p_{\text{sift}}} \sum_{b \in \mathcal{B}} \sum_{x, y=0}^1 q_b^A q_b^B p_{X_2 Y_2 | X_1 Y_1}(x, y | b, b) |b, b\rangle\langle b, b|_{X_1 Y_1} \otimes |x, y\rangle\langle x, y|_{X_2 Y_2} \otimes \rho_E^{b, x, y}, \quad (39)$$

where

$$p_{X_2 Y_2 | X_1 Y_1}(x, y | b, b) = \frac{1}{2} \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b, x})], \quad (40)$$

$$\rho_E^{b, x, y} = \frac{1}{p_{X_2 Y_2 | X_1 Y_1}(x, y | b, b)} \text{Tr}_B[\Pi_y^b \mathcal{U}_{A \rightarrow BE}^{\mathcal{N}_{A \rightarrow B}^{\vec{Q}}}(\rho_A^{b, x})]. \quad (41)$$

1.3 Discarding basis information

Discarding, or “forgetting”, the basis information corresponds to tracing out the registers X_1 and Y_1 containing the basis information for Alice and Bob, respectively. We then have

$$\rho_{X_2 Y_2}^{\text{sift}} := \text{Tr}_{X_1 Y_1}[\rho_{X_1 X_2 Y_1 Y_2}^{\text{sift}}] = \frac{1}{p_{\text{sift}}} \sum_{x, y=0}^1 \frac{1}{2} \left(\sum_{b \in \mathcal{B}} q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b, x})] \right) |x, y\rangle\langle x, y|_{X_2 Y_2}. \quad (42)$$

2 BB84 protocol

For the BB84 protocol, we have $\mathcal{B} = \mathcal{B}_{\text{BB84}} = \{0, 1\}$, corresponding to the X and Z bases. We typically take $q_b^A = \frac{1}{2} = q_b^B$ for all $b \in \mathcal{B}$, so that $p_{\text{sift}} = \frac{1}{2}$. The state in (36) is

$$\rho_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}} := \frac{1}{p_{\text{sift}}} \sum_{b=0}^1 \sum_{x,y=0}^1 \frac{1}{2} q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})] |b, b\rangle \langle b, b|_{X_1 Y_1} \otimes |x, y\rangle \langle x, y|_{X_2 Y_2}, \quad (43)$$

and

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(b, x, b, y) = \frac{q_b^A q_b^B}{2p_{\text{sift}}} \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})], \quad b \in \{0, 1\}, \quad x, y \in \{0, 1\}. \quad (44)$$

We then have

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(1, 0, 1, 0) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr} \left[|+\rangle \langle +|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+\rangle \langle +|_A) \right] = \frac{1}{4}(1 - Q_x), \quad (45)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(1, 0, 1, 1) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr} \left[|-\rangle \langle -|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+\rangle \langle +|_A) \right] = \frac{1}{4}Q_x, \quad (46)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(1, 1, 1, 0) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr} \left[|+\rangle \langle +|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-\rangle \langle -|_A) \right] = \frac{1}{4}Q_x, \quad (47)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(1, 1, 1, 1) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr} \left[|-\rangle \langle -|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-\rangle \langle -|_A) \right] = \frac{1}{4}(1 - Q_x), \quad (48)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(0, 0, 0, 0) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr} \left[|0\rangle \langle 0|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|0\rangle \langle 0|_A) \right] = \frac{1}{4}(1 - Q_z), \quad (49)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(0, 0, 0, 1) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr} \left[|1\rangle \langle 1|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|0\rangle \langle 0|_A) \right] = \frac{1}{4}Q_z, \quad (50)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(0, 1, 0, 0) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr} \left[|0\rangle \langle 0|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|1\rangle \langle 1|_A) \right] = \frac{1}{4}Q_z, \quad (51)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(0, 1, 0, 1) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr} \left[|1\rangle \langle 1|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|1\rangle \langle 1|_A) \right] = \frac{1}{4}(1 - Q_z) \quad (52)$$

The mutual information of the full distribution $p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}$ is

$$I(X_1 X_2; Y_1 Y_2)_{\rho^{\text{BB84|sift}}} = \frac{1}{2}(4 - h_2(Q_x) - h_2(Q_z)). \quad (53)$$

If we discard the basis information, then

$$\rho_{X_2 Y_2}^{\text{BB84|sift}} = \frac{1}{p_{\text{sift}}} \sum_{x,y=0}^1 \frac{1}{2} \left(\sum_{b=0}^1 q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})] \right) |x, y\rangle \langle x, y|_{X_2 Y_2}, \quad (54)$$

so that the probability distribution is

$$p_{X_2 Y_2}^{\text{BB84|sift}}(0, 0) = p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(0, 0, 0, 0) + p_{X_1 X_2 Y_1 Y_2}^{\text{BB84|sift}}(1, 0, 1, 0) = \frac{1}{4}(1 - Q_x) + \frac{1}{4}(1 - Q_z)$$

$$= \frac{1}{2}(1 - Q), \quad (55)$$

$$p_{X_2Y_2}^{\text{BB84|sift}}(0, 1) = p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(0, 0, 0, 1) + p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(1, 0, 1, 1) = \frac{1}{4}Q_x + \frac{1}{4}Q_z = \frac{1}{2}Q, \quad (56)$$

$$p_{X_2Y_2}^{\text{BB84|sift}}(1, 0) = p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(0, 1, 0, 0) + p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(1, 1, 1, 0) = \frac{1}{4}Q_x + \frac{1}{4}Q_z = \frac{1}{2}Q, \quad (57)$$

$$\begin{aligned} p_{X_2Y_2}^{\text{BB84|sift}}(1, 1) &= p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(0, 1, 0, 1) + p_{X_1X_2Y_1Y_2}^{\text{BB84|sift}}(1, 1, 1, 1) = \frac{1}{4}(1 - Q_x) + \frac{1}{4}(1 - Q_z) \\ &= \frac{1}{2}(1 - Q), \end{aligned} \quad (58)$$

where we have defined the average QBER

$$Q := \frac{1}{2}(Q_x + Q_z). \quad (59)$$

In other words, when we discard the basis information, Alice and Bob's classical data can be characterized using just one parameter.

Note that the state $\rho_{X_2Y_2}^{\text{BB84|sift}}$ can be simplified in the case that $q_b^A = \frac{1}{2} = q_b^B$. First, note that

$$\Pi_y^b \equiv \rho_A^{b,y} = H^b|y\rangle\langle y|H^b \quad \forall b \in \{0, 1\}, \quad \forall y \in \{0, 1\}, \quad (60)$$

where H is the Hadamard operator, defined as

$$H := |+\rangle\langle 0| + |-\rangle\langle 1|. \quad (61)$$

Then,

$$\sum_{b=0}^1 q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})] = \frac{1}{4} \sum_{b=0}^1 \text{Tr}[H^b|y\rangle\langle y|H^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(H^b|x\rangle\langle x|H^b)] \quad (62)$$

$$= \frac{1}{4} \sum_{b=0}^1 \text{Tr}[|y\rangle\langle y|H^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(H^b|x\rangle\langle x|H^b)H^b] \quad (63)$$

$$= \frac{1}{2} \text{Tr} \left[|y\rangle\langle y| \left(\frac{1}{2} \sum_{b=0}^1 H^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(H^b|x\rangle\langle x|H^b)H^b \right) \right] \quad (64)$$

$$= \frac{1}{2} \text{Tr} \left[|y\rangle\langle y| \mathcal{N}_{A \rightarrow B}^{\text{BB84}, Q}(|x\rangle\langle x|) \right], \quad (65)$$

where

$$\mathcal{N}_{A \rightarrow B}^{\text{BB84}, Q}(\rho_A) := (1 - 2Q + s)\rho_A + (Q - s)Z\rho_AZ + (Q - s)X\rho_AX + sY\rho_AY \quad (66)$$

is known as the BB84 channel in [SS08], $Q = \frac{1}{2}(Q_x + Q_z)$, and $s = Q - \frac{Q_y}{2}$. So we can write $\rho_{X_2Y_2}^{\text{BB84|sift}}$ as

$$\rho_{X_2Y_2}^{\text{BB84|sift}} = \frac{1}{2} \sum_{x,y=0}^1 \text{Tr} \left[|y\rangle\langle y| \mathcal{N}_{A \rightarrow B}^{\text{BB84}, Q}(|x\rangle\langle x|) \right] |x, y\rangle\langle x, y|. \quad (67)$$

Note that $s \in [0, Q]$ is an open parameter, which arises because there is no Y -basis measurement in the BB84 protocol, so that the QBER Q_y cannot be estimated by Alice and Bob. When calculating the key rate, therefore, we must take the worst-case value for s .

3 Six-state protocol

For the six-state protocol, we have $\mathcal{B} = \mathcal{B}_{\text{six-state}} = \{0, 1, 2\}$, corresponding to the X , Y , and Z bases. We typically take $q_b^A = \frac{1}{3} = q_b^B$ for all $b \in \mathcal{B}$, so that $p_{\text{sift}} = \frac{1}{3}$. The state in (36) is

$$\rho_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}} = \frac{1}{p_{\text{sift}}} \sum_{b=0}^2 \sum_{x,y=0}^1 \frac{1}{2} q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})] |b, b\rangle \langle b, b|_{X_1 Y_1} \otimes |x, y\rangle \langle x, y|_{X_2 Y_2}, \quad (68)$$

and

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(b, x, b, y) = \frac{q_b^A q_b^B}{2p_{\text{sift}}} \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})], \quad b \in \{0, 1, 2\}, \quad x, y \in \{0, 1\}. \quad (69)$$

We then have

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1, 0, 1, 0) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr}\left[|+\rangle \langle +|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+\rangle \langle +|_A)\right] = \frac{1}{6}(1 - Q_x), \quad (70)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1, 0, 1, 1) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr}\left[|-\rangle \langle -|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+\rangle \langle +|_A)\right] = \frac{1}{6}Q_x, \quad (71)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1, 1, 1, 0) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr}\left[|+\rangle \langle +|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-\rangle \langle -|_A)\right] = \frac{1}{6}Q_x, \quad (72)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1, 1, 1, 1) = \frac{q_1^A q_1^B}{2p_{\text{sift}}} \text{Tr}\left[|-\rangle \langle -|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-\rangle \langle -|_A)\right] = \frac{1}{6}(1 - Q_x), \quad (73)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0, 0, 0, 0) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr}\left[|0\rangle \langle 0|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|0\rangle \langle 0|_A)\right] = \frac{1}{6}(1 - Q_z), \quad (74)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0, 0, 0, 1) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr}\left[|1\rangle \langle 1|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|0\rangle \langle 0|_A)\right] = \frac{1}{6}Q_z, \quad (75)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0, 1, 0, 0) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr}\left[|0\rangle \langle 0|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|1\rangle \langle 1|_A)\right] = \frac{1}{6}Q_z, \quad (76)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0, 1, 0, 1) = \frac{q_0^A q_0^B}{2p_{\text{sift}}} \text{Tr}\left[|1\rangle \langle 1|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|1\rangle \langle 1|_A)\right] = \frac{1}{6}(1 - Q_z), \quad (77)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2, 0, 2, 0) = \frac{q_2^A q_2^B}{2p_{\text{sift}}} \text{Tr}\left[|+i\rangle \langle +i|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+i\rangle \langle +i|_A)\right] = \frac{1}{6}(1 - Q_y), \quad (78)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2, 0, 2, 1) = \frac{q_2^A q_2^B}{2p_{\text{sift}}} \text{Tr}\left[|-i\rangle \langle -i|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|+i\rangle \langle +i|_A)\right] = \frac{1}{6}Q_y, \quad (79)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2, 1, 2, 0) = \frac{q_2^A q_2^B}{2p_{\text{sift}}} \text{Tr}\left[|+i\rangle \langle +i|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-i\rangle \langle -i|_A)\right] = \frac{1}{6}Q_y, \quad (80)$$

$$p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2, 1, 2, 1) = \frac{q_2^A q_2^B}{2p_{\text{sift}}} \text{Tr}\left[|-i\rangle \langle -i|_B \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(|-i\rangle \langle -i|_A)\right] = \frac{1}{6}(1 - Q_y). \quad (81)$$

If we discard the basis information, then

$$\rho_{X_2 Y_2}^{\text{6-state|sift}} = \frac{1}{p_{\text{sift}}} \sum_{x,y=0}^1 \frac{1}{2} \left(\sum_{b=0}^2 q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_A^{b,x})] \right) |x, y\rangle \langle x, y|_{X_2 Y_2}, \quad (82)$$

so that the probability distribution is

$$\begin{aligned} p_{X_2 Y_2}^{\text{6-state|sift}}(0,0) &= p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0,0,0,0) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1,0,1,0) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2,0,2,0) \\ &= \frac{1}{6}(1-Q_x) + \frac{1}{6}(1-Q_z) + \frac{1}{6}(1-Q_y) = \frac{1}{2}(1-Q), \end{aligned} \quad (83)$$

$$\begin{aligned} p_{X_2 Y_2}^{\text{6-state|sift}}(0,1) &= p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0,0,0,1) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1,0,1,1) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2,0,2,1) \\ &= \frac{1}{6}Q_x + \frac{1}{6}Q_y + \frac{1}{6}Q_z = \frac{1}{2}Q, \end{aligned} \quad (84)$$

$$\begin{aligned} p_{X_2 Y_2}^{\text{6-state|sift}}(1,0) &= p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0,1,0,0) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1,1,1,0) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2,1,2,0) \\ &= \frac{1}{6}Q_x + \frac{1}{6}Q_y + \frac{1}{6}Q_z = \frac{1}{2}Q, \end{aligned} \quad (85)$$

$$\begin{aligned} p_{X_2 Y_2}^{\text{6-state|sift}}(1,1) &= p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(0,1,0,1) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(1,1,1,1) + p_{X_1 X_2 Y_1 Y_2}^{\text{6-state|sift}}(2,1,2,1) \\ &= \frac{1}{6}(1-Q_x) + \frac{1}{6}(1-Q_z) + \frac{1}{6}(1-Q_y) = \frac{1}{2}(1-Q), \end{aligned} \quad (86)$$

where we have defined the average QBER

$$Q := \frac{1}{3}(Q_x + Q_y + Q_z). \quad (87)$$

In other words, when we discard the basis information, Alice and Bob's data can be characterized using just one parameter.

Note that the state $\rho_{X_2 Y_2}^{\text{6-state|sift}}$ can be simplified in the case that $q_b^A = \frac{1}{3} = q_b^B$. First, define the operator

$$T := |+\rangle\langle 0| - |i\rangle\langle 1|. \quad (88)$$

Then, observe that

$$\Pi_0^1 = |+\rangle\langle +| = T|0\rangle\langle 0|T^\dagger, \quad \Pi_1^1 = T|1\rangle\langle 1|T^\dagger, \quad (89)$$

$$\Pi_0^2 = |+i\rangle\langle +i| = T^2|0\rangle\langle 0|T^{2\dagger}, \quad \Pi_1^2 = |-i\rangle\langle -i| = T^2|1\rangle\langle 1|T^{2\dagger}. \quad (90)$$

In other words,

$$\Pi_y^b \equiv \rho_A^{b,y} = T^b|y\rangle\langle y|T^{b\dagger}, \quad \forall b \in \{0, 1, 2\}, \quad \forall y \in \{0, 1\}. \quad (91)$$

Therefore,

$$\sum_{b=0}^2 q_b^A q_b^B \text{Tr}[\Pi_y^b \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(\rho_Q^{b,x})] = \frac{1}{9} \sum_{b=0}^2 \text{Tr}[T^b|y\rangle\langle y|T^{b\dagger} \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(T^b|x\rangle\langle x|T^{b\dagger})] \quad (92)$$

$$= \frac{1}{9} \sum_{b=0}^2 \text{Tr}[|y\rangle\langle y|T^{b\dagger} \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(T^b|x\rangle\langle x|T^{b\dagger})T^b] \quad (93)$$

$$= \frac{1}{3} \text{Tr} \left[|y\rangle\langle y| \left(\frac{1}{3} \sum_{b=0}^2 T^{b\dagger} \mathcal{N}_{A \rightarrow B}^{\vec{Q}}(T^b|x\rangle\langle x|T^{b\dagger})T^b \right) \right] \quad (94)$$

$$= \frac{1}{3} \text{Tr} \left[|y\rangle\langle y| \mathcal{N}_{A \rightarrow B}^{\text{6-state}, Q}(|x\rangle\langle x|) \right], \quad (95)$$

where

$$\mathcal{N}_{A \rightarrow B}^{6\text{-state},Q}(\rho_A) := \left(1 - \frac{3Q}{2}\right) \rho_A + \frac{Q}{2} X \rho_A X + \frac{Q}{2} Y \rho_A Y + \frac{Q}{2} Z \rho_A Z \quad (96)$$

is the depolarizing channel, with $Q = \frac{1}{3}(Q_x + Q_y + Q_z)$. So we have that

$$\rho_{X_2 Y_2}^{\text{6-state|sift}} = \frac{1}{2} \sum_{x,y=0}^1 \text{Tr} \left[|y\rangle\langle y| \mathcal{N}_{A \rightarrow B}^{6\text{-state},Q} (|x\rangle\langle x|) \right] |x, y\rangle\langle x, y|. \quad (97)$$

References

- [BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin tossing. In *Proceedings of IEEE International Conference on Computers Systems and Signal Processing*, pages 175–179, Bangalore, India, December 1984.
- [BPG99] H. Bechmann-Pasquinucci and Nicolas Gisin. Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. *Physical Review A*, 59(6):4238–4248, June 1999.
- [Bru98] Dagmar Bruß. Optimal eavesdropping in quantum cryptography with six states. *Physical Review Letters*, 81(14):3018–3021, October 1998. arXiv:quant-ph/9805019.
- [DHCB05] W. Dür, M. Hein, J. I. Cirac, and H.-J. Briegel. Standard forms of noisy quantum operations via depolarization. *Physical Review A*, 72(5):052326, November 2005. arXiv:quant-ph/0507134.
- [SS08] Graeme Smith and John A. Smolin. Additive extensions of a quantum channel. In *2008 IEEE Information Theory Workshop*, pages 368–372, May 2008. arXiv:0712.2471.